
Oracle® Big Data Spatial and Graph
User's Guide and Reference

Release 1.2

E67958-03

April 2016

Oracle Big Data Spatial and Graph User's Guide and Reference, Release 1.2

E67958-03

Copyright © 2015, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Chuck Murray, Harihara Subramanian, Donna Carver

Contributors: Bill Beauregard, Hector Briseno, Hassan Chafi, Zazhil Herena, Sungpack Hong, Roberto
Infante, Hugo Labra, Gabriela Montiel-Moreno, Siva Ravada, Carlos Reyes, Korbinian Schmid, Jane Tao, Zhe
(Alan) Wu

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... xv

Audience .. xv

Documentation Accessibility .. xv

Related Documents... xv

Conventions... xv

1 Big Data Spatial and Graph Overview

1.1 About Big Data Spatial and Graph.. 1-1

1.2 Spatial Features .. 1-1

1.3 Property Graph Features .. 1-2

1.3.1 Property Graph Sizing Recommendations ... 1-3

1.4 Multimedia Analytics Features.. 1-3

1.5 Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance................... 1-3

1.6 Installing and Configuring the Big Data Spatial Image Processing Framework.................... 1-4

1.6.1 Installing Image Processing Framework for Oracle Big Data Appliance

Distribution.. 1-4

1.6.2 Installing the Image Processing Framework for Other Distributions (Not Oracle

Big Data Appliance) ... 1-4

1.6.3 Post-installation Verification of the Image Processing Framework.............................. 1-5

1.7 Installing and Configuring the Big Data Spatial Image Server... 1-9

1.7.1 Installing and Configuring the Image Server for Oracle Big Data Appliance............. 1-9

1.7.2 Installing and Configuring the Image Server Web for Other Systems (Not Big Data

Appliance).. 1-11

1.7.3 Post-installation Verification Example for the Image Server Console........................ 1-12

1.8 Installing Oracle Big Data Spatial Hadoop Vector Console .. 1-13

1.8.1 Assumptions and Prerequisite Libraries... 1-13

1.8.2 Installing Spatial Hadoop Vector Console on Oracle Big Data Appliance 1-14

1.8.3 Installing Spatial Hadoop Vector Console for Other Systems (Not Big Data

Appliance).. 1-15

1.8.4 Configuring Spatial Hadoop Vector Console on Oracle Big Data Appliance........... 1-15

1.8.5 Configuring Spatial Hadoop Vector Console for Other Systems (Not Big Data

Appliance).. 1-18

iii

1.9 Installing Property Graph Support on a CDH Cluster or Other Hardware 1-18

1.9.1 Apache HBase Prerequisites ... 1-19

1.9.2 Property Graph Installation Steps.. 1-19

1.9.3 About the Property Graph Installation Directory ... 1-20

1.9.4 Optional Installation Task for In-Memory Analytics.. 1-20

1.10 Installing and Configuring Multimedia Analytics Support .. 1-21

1.10.1 Assumptions and Libraries for Multimedia Analytics ... 1-21

1.10.2 Transcoding Software (Options) .. 1-22

2 Using Big Data Spatial and Graph with Spatial Data

2.1 About Big Data Spatial and Graph Support for Spatial Data.. 2-1

2.1.1 What is Big Data Spatial and Graph on Apache Hadoop?... 2-2

2.1.2 Advantages of Oracle Big Data Spatial and Graph ... 2-2

2.1.3 Oracle Big Data Spatial Features and Functions.. 2-2

2.1.4 Oracle Big Data Spatial Files, Formats, and Software Requirements 2-3

2.2 Oracle Big Data Vector and Raster Data Processing... 2-3

2.2.1 Oracle Big Data Spatial Raster Data Processing .. 2-3

2.2.2 Oracle Big Data Spatial Vector Data Processing.. 2-3

2.3 Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

.. 2-4

2.3.1 Image Loader .. 2-5

2.3.2 Image Processor.. 2-6

2.3.3 Image Server.. 2-7

2.4 Loading an Image to Hadoop Using the Image Loader .. 2-7

2.4.1 Image Loading Job ... 2-8

2.4.2 Input Parameters .. 2-8

2.4.3 Output Parameters ... 2-9

2.5 Processing an Image Using the Oracle Spatial Hadoop Image Processor............................. 2-10

2.5.1 Image Processing Job ... 2-10

2.5.2 Input Parameters .. 2-10

2.5.3 Job Execution... 2-13

2.5.4 Processing Classes and ImageBandWritable.. 2-13

2.5.5 Map Algebra Operations... 2-16

2.5.6 Output .. 2-17

2.6 Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing

API... 2-18

2.7 Oracle Big Data Spatial Vector Analysis .. 2-20

2.7.1 Spatial Indexing.. 2-21

2.7.2 Using MVSuggest... 2-24

2.7.3 Spatial Filtering... 2-25

2.7.4 Classifying Data Hierarchically.. 2-27

2.7.5 Generating Buffers ... 2-34

2.7.6 Spatial Binning.. 2-35

iv

2.7.7 Spatial Clustering ... 2-36

2.7.8 RecordInfoProvider.. 2-37

2.7.9 HierarchyInfo.. 2-40

2.7.10 Using JGeometry in MapReduce Jobs ... 2-45

2.7.11 Tuning Performance Data of Job Running Times using Vector Analysis API........ 2-48

2.8 Using the Oracle Big Data Spatial and Graph Vector Console ... 2-48

2.8.1 Creating a Spatial Index Using the Console ... 2-49

2.8.2 Exploring the Indexed Spatial Data... 2-50

2.8.3 Running a Categorization Job Using the Console ... 2-50

2.8.4 Viewing the Categorization Results .. 2-52

2.8.5 Saving Categorization Results to a File... 2-52

2.8.6 Creating and Deleting Templates .. 2-52

2.8.7 Configuring Templates.. 2-53

2.8.8 Running a Clustering Job Using the Console... 2-54

2.8.9 Viewing the Clustering Results.. 2-54

2.8.10 Saving Clustering Results to a File .. 2-55

2.8.11 Running a Binning Job Using the Console ... 2-55

2.8.12 Viewing the Binning Results .. 2-56

2.8.13 Saving Binning Results to a File ... 2-56

2.8.14 Running a Job to Create an Index Using the Command Line 2-57

2.8.15 Running a Job to Perform a Spatial Filtering ... 2-57

2.8.16 Running a Job to Create a Hierarchy Result... 2-58

2.8.17 Running a Job to Generate Buffer .. 2-59

2.9 Using Oracle Big Data Spatial and Graph Image Server Console .. 2-60

2.9.1 Loading Images to HDFS Hadoop Cluster to Create a Mosaic 2-60

3 Configuring Property Graph Support

3.1 Tuning the Software Configuration .. 3-1

3.1.1 Tuning Apache HBase for Use With Property Graphs... 3-1

3.1.2 Tuning Oracle NoSQL Database for Use with Property Graphs 3-4

4 Using Property Graphs in a Big Data Environment

4.1 About Property Graphs .. 4-1

4.1.1 What Are Property Graphs? ... 4-1

4.1.2 What Is Big Data Support for Property Graphs? ... 4-2

4.2 About Property Graph Data Formats ... 4-3

4.2.1 GraphML Data Format .. 4-4

4.2.2 GraphSON Data Format.. 4-4

4.2.3 GML Data Format .. 4-5

4.2.4 Oracle Flat File Format .. 4-6

4.3 Getting Started With Property Graphs... 4-6

4.4 Using Java APIs for Property Graph Data ... 4-6

4.4.1 Overview of the Java APIs .. 4-7

v

4.4.2 Parallel Loading of Graph Data ... 4-9

4.4.3 Opening and Closing a Property Graph Instance ... 4-24

4.4.4 Creating the Vertices.. 4-26

4.4.5 Creating the Edges ... 4-27

4.4.6 Deleting the Vertices and Edges... 4-27

4.4.7 Reading a Graph from a Database into the Embedded In-Memory Analyst 4-28

4.4.8 Dropping a Property Graph.. 4-28

4.5 Managing Text Indexing for Property Graph Data .. 4-29

4.5.1 Using Automatic Indexes with the Apache Lucene Search Engine............................ 4-30

4.5.2 Using Manual Indexes with the SolrCloud Search Engine .. 4-32

4.5.3 Handling Data Types... 4-34

4.5.4 Uploading a Collection's SolrCloud Configuration to Zookeeper.............................. 4-39

4.5.5 Updating Configuration Settings on Text Indexes for Property Graph Data 4-39

4.5.6 Using Parallel Query on Text Indexes for Property Graph Data 4-40

4.6 Support for Secure Oracle NoSQL Database ... 4-43

4.7 Support for Secure Apache HBase/Hadoop ... 4-45

4.8 Using the Groovy Shell with Property Graph Data.. 4-48

4.9 Exploring the Sample Programs.. 4-50

4.9.1 About the Sample Programs... 4-50

4.9.2 Compiling and Running the Sample Programs... 4-51

4.9.3 About the Example Output... 4-51

4.9.4 Example: Creating a Property Graph .. 4-52

4.9.5 Example: Dropping a Property Graph .. 4-53

4.9.6 Examples: Adding and Dropping Vertices and Edges ... 4-53

4.10 Oracle Flat File Format Definition... 4-55

4.10.1 About the Property Graph Description Files ... 4-55

4.10.2 Vertex File.. 4-55

4.10.3 Edge File .. 4-57

4.10.4 Encoding Special Characters .. 4-58

4.10.5 Example Property Graph in Oracle Flat File Format .. 4-58

4.11 Example Python User Interface ... 4-59

5 Using In-Memory Analytics

5.1 Reading a Graph into Memory .. 5-1

5.1.1 Connecting to an In-Memory Analytics Server Instance.. 5-1

5.1.2 Using the Shell Help .. 5-3

5.1.3 Providing Graph Metadata in a Configuration File .. 5-3

5.1.4 Reading Graph Data into Memory .. 5-4

5.2 Reading Custom Graph Data... 5-6

5.2.1 Creating a Simple Graph File ... 5-6

5.2.2 Adding a Vertex Property... 5-7

5.2.3 Using Strings as Vertex Identifiers .. 5-8

5.2.4 Adding an Edge Property ... 5-9

vi

5.3 Storing Graph Data on Disk ... 5-10

5.3.1 Storing the Results of Analysis in a Vertex Property .. 5-10

5.3.2 Storing a Graph in Edge-List Format on Disk.. 5-10

5.4 Executing Built-in Algorithms ... 5-11

5.4.1 About In-Memory Analytics... 5-11

5.4.2 Running the Triangle Counting Algorithm.. 5-12

5.4.3 Running the Pagerank Algorithm.. 5-12

5.5 Creating Subgraphs ... 5-13

5.5.1 About Filter Expressions ... 5-13

5.5.2 Using a Simple Filter to Create a Subgraph ... 5-14

5.5.3 Using a Complex Filter to Create a Subgraph.. 5-14

5.5.4 Using a Vertex Set to Create a Bipartite Subgraph.. 5-15

5.6 Deploying to Jetty .. 5-17

5.6.1 About the Authentication Mechanism.. 5-18

5.7 Deploying to Apache Tomcat .. 5-18

5.8 Deploying to Oracle WebLogic Server ... 5-19

5.8.1 Installing Oracle WebLogic Server .. 5-19

5.8.2 Deploying In-Memory Analytics ... 5-19

5.8.3 Verifying That the Server Works ... 5-20

5.9 Connecting to the In-Memory Analytics Server.. 5-20

5.9.1 Connecting with the In-Memory Analytics Shell .. 5-20

5.9.2 Connecting with Java... 5-21

5.9.3 Connecting with an HTTP Request ... 5-21

5.10 Reading and Storing Data in HDFS .. 5-22

5.10.1 Loading Data from HDFS ... 5-22

5.10.2 Storing Graph Snapshots in HDFS .. 5-23

5.10.3 Compiling and Running a Java Application in Hadoop .. 5-23

5.11 Running In-Memory Analytics as a YARN Application ... 5-24

5.11.1 Starting and Stopping In-Memory Analytics Services.. 5-24

5.11.2 Connecting to In-Memory Analytics Services.. 5-25

5.11.3 Monitoring In-Memory Analytics Services .. 5-25

6 Using Multimedia Analytics

6.1 About Multimedia Analytics ... 6-1

6.2 Face Recognition Using the Multimedia Analytics Framework... 6-1

6.2.1 Training to Detect Faces .. 6-2

6.2.2 Selecting Faces to be Used for Training .. 6-3

6.2.3 Detecting Faces in Videos ... 6-4

6.2.4 Detecting Faces in Images ... 6-6

6.2.5 Examples and Training Materials for Detecting Faces ... 6-6

6.3 Configuration Properties for Multimedia Analytics .. 6-6

6.4 Using the Multimedia Analytics Framework with Third-Party Software 6-11

6.5 Displaying Images in Output... 6-12

vii

A Third-Party Licenses for Bundled Software

A.1 Apache Licensed Code... A-2

A.2 ANTLR 3 .. A-5

A.3 AOP Alliance... A-6

A.4 Apache Commons CLI... A-6

A.5 Apache Commons Codec .. A-6

A.6 Apache Commons Collections.. A-6

A.7 Apache Commons Configuration .. A-6

A.8 Apache Commons IO... A-7

A.9 Apache Commons Lang .. A-7

A.10 Apache Commons Logging... A-7

A.11 Apache fluent .. A-7

A.12 Apache Groovy ... A-7

A.13 Apache htrace.. A-7

A.14 Apache HTTP Client .. A-7

A.15 Apache HTTPComponents Core.. A-7

A.16 Apache Jena ... A-8

A.17 Apache Log4j... A-8

A.18 Apache Lucene.. A-8

A.19 Apache Xerces2 ... A-8

A.20 Apache xml-commons ... A-8

A.21 Cloudera CDH .. A-9

A.22 Fastutil .. A-9

A.23 GeoNames Data .. A-9

A.24 Geospatial Data Abstraction Library (GDAL).. A-14

A.25 Google Guava.. A-18

A.26 Google Guice ... A-18

A.27 Google protobuf.. A-18

A.28 Jackson.. A-19

A.29 Jansi... A-19

A.30 JCodec... A-19

A.31 Jettison.. A-21

A.32 JLine .. A-21

A.33 Javassist .. A-21

A.34 Jung... A-21

A.35 MessagePack.. A-22

A.36 Netty ... A-22

A.37 OpenCV.. A-25

A.38 Slf4j.. A-25

A.39 Tinkerpop Blueprints ... A-26

A.40 Tinkerpop Gremlin... A-26

A.41 Tinkerpop Pipes .. A-27

viii

Index

ix

x

List of Figures

4-1 Simple Property Graph Example.. 4-2
4-2 Oracle Property Graph Architecture.. 4-3
5-1 Property Graph Rendered by sample.adj Data... 5-4
5-2 Simple Custom Property Graph.. 5-7
5-3 Edges Matching src.prop == 10... 5-13
5-4 Graph Created by the Simple Filter.. 5-14
5-5 Edges Matching the outDegree Filter... 5-15
5-6 Graph Created by the outDegree Filter.. 5-15

xi

xii

List of Tables

1-1 Property Graph Sizing Recommendations.. 1-3
2-1 ImageBandWritable Properties... 2-14
2-2 Performance time for running jobs using Vector Analysis API... 2-48
4-1 Apache Lucene Data Type Identifiers.. 4-34
4-2 SolrCloud Data Type Identifiers... 4-37
4-3 Property Graph Program Examples (Selected)... 4-50
4-4 Property Graph Data Type Abbreviations.. 4-51
4-5 Vertex File Record Format... 4-56
4-6 Edge File Record Format.. 4-57
4-7 Special Character Codes in the Oracle Flat File Format.. 4-58

xiii

xiv

Preface

This document provides conceptual and usage information about Oracle Big Data
Spatial and Graph, which enables you to create, store, and work with Spatial and
Graph vector, raster, and property graph data in a Big Data environment.

Audience
This document is intended for database and application developers in Big Data
environments.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see the following documents"

• Oracle Big Data Connectors User's Guide

• Oracle Big Data Spatial and Graph Java API Reference for Apache HBase

• Oracle Big Data Spatial and Graph Java API Reference for Oracle NoSQL Database

• Oracle Big Data Appliance Site Checklists

• Oracle Big Data Appliance Owner's Guide

• Oracle Big Data Appliance Safety and Compliance Guide

Conventions
The following text conventions are used in this document:

xv

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

1
Big Data Spatial and Graph Overview

This chapter provides an overview of Oracle Big Data support for Oracle Spatial and
Graph spatial, property graph, and multimedia analytics features.

• About Big Data Spatial and Graph

• Spatial Features

• Property Graph Features

• Multimedia Analytics Features

• Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance

• Installing and Configuring the Big Data Spatial Image Processing Framework

• Installing and Configuring the Big Data Spatial Image Server

• Installing Oracle Big Data Spatial Hadoop Vector Console

• Installing Property Graph Support on a CDH Cluster or Other Hardware

• Installing and Configuring Multimedia Analytics Support

1.1 About Big Data Spatial and Graph
Oracle Big Data Spatial and Graph delivers advanced spatial and graph analytic
capabilities to supported Apache Hadoop and NoSQL Database Big Data platforms.

The spatial features include support for data enrichment of location information,
spatial filtering and categorization based on distance and location-based analysis, and
spatial data processing for vector and raster processing of digital map, sensor, satellite
and aerial imagery values, and APIs for map visualization.

The property graph features support Apache Hadoop HBase and Oracle NoSQL
Database for graph operations, indexing, queries, search, and in-memory analytics.

The multimedia analytics features provide a framework for processing video and
image data in Apache Hadoop, including built-in face recognition using OpenCV.

1.2 Spatial Features
Spatial location information is a common element of Big Data. Businesses can use
spatial data as the basis for associating and linking disparate data sets. Location
information can also be used to track and categorize entities based on proximity to
another person, place, or object, or on their presence a particular area. Location
information can facilitate location-specific offers to customers entering a particular
geography, something known as geo-fencing. Georeferenced imagery and sensory data
can be analyzed for a variety of business benefits.

Big Data Spatial and Graph Overview 1-1

The Spatial features of Oracle Big Data Special and Graph support those use cases
with the following kinds of services.

Vector Services:

• Ability to associate documents and data with names, such as cities or states, or
longitude/latitude information in spatial object definitions for a default
administrative hierarchy

• Support for text-based 2D and 3D geospatial formats, including GeoJSON files,
Shapefiles, GML, and WKT, or you can use the Geospatial Data Abstraction Library
(GDAL) to convert popular geospatial encodings such as Oracle SDO_Geometry,
ST_Geometry, and other supported formats

• An HTML5-based map client API and a sample console to explore, categorize, and
view data in a variety of formats and coordinate systems

• Topological and distance operations: Anyinteract, Inside, Contains, Within
Distance, Nearest Neighbor, and others

• Spatial indexing for fast retrieval of data

Raster Services:

• Support for many image file formats supported by GDAL and image files stored in
HDFS

• A sample console to view the set of images that are available

• Raster operations, including, subsetting, georeferencing, mosaics, and format
conversion

1.3 Property Graph Features
Graphs manage networks of linked data as vertices, edges, and properties of the
vertices and edges. Graphs are commonly used to model, store, and analyze
relationships found in social networks, cyber security, utilities and
telecommunications, life sciences and clinical data, and knowledge networks.

Typical graph analyses encompass graph traversal, recommendations, finding
communities and influencers, and pattern matching. Industries including,
telecommunications, life sciences and healthcare, security, media and publishing can
benefit from graphs.

The property graph features of Oracle Big Data Special and Graph support those use
cases with the following capabilities:

• A scalable graph database on Apache HBase and Oracle NoSQL Database

• Developer-based APIs based upon Tinkerpop Blueprints, and Java graph APIs

• Text search and query through integration with Apache Lucene and SolrCloud

• Scripting languages support for Groovy and Python

• A parallel, in-memory graph analytics engine

• A fast, scalable suite of social network analysis functions that include ranking,
centrality, recommender, community detection, path finding

Property Graph Features

1-2 User's Guide and Reference

• Parallel bulk load and export of property graph data in Oracle-defined flat files
format

• Manageability through a Groovy-based console to execute Java and Tinkerpop
Gremlin APIs

See also Property Graph Sizing Recommendations

1.3.1 Property Graph Sizing Recommendations
The following are recommendations for property graph installation.

Table 1-1 Property Graph Sizing Recommendations

Graph Size Recommended Physical
Memory to be Dedicated

Recommended Number of CPU
Processors

10 to 100M
edges

Up to 14 GB RAM 2 to 4 processors, and up to 16
processors for more compute-intensive
workloads

100M to 1B
edges

14 GB to 100 GB RAM 4 to 12 processors, and up to 16 to 32
processors for more compute-intensive
workloads

Over 1B edges Over 100 GB RAM 12 to 32 processors, or more for
especially compute-intensive workloads

1.4 Multimedia Analytics Features
The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop. The framework
enables distributed processing of video and image data.

A main use case is performing facial recognition in videos and images.

1.5 Installing Oracle Big Data Spatial and Graph on an Oracle Big Data
Appliance

The Mammoth command-line utility for installing and configuring the Oracle Big Data
Appliance software also installs the Oracle Big Data Spatial and Graph option,
including the spatial, property graph, and multimedia capabilities. You can enable this
option during an initial software installation, or afterward using the bdacli utility.

To use Oracle NoSQL Database as a graph repository, you must have an Oracle
NoSQL Database cluster.

To use Apache HBase as a graph repository, you must have an Apache Hadoop
cluster.

See Also:

Oracle Big Data Appliance Owner's Guide for software configuration
instructions.

Oracle Big Data Appliance Owner's Guide for software configuration
instructions.

Multimedia Analytics Features

Big Data Spatial and Graph Overview 1-3

1.6 Installing and Configuring the Big Data Spatial Image Processing
Framework

Installing and configuring the Image Processing Framework depends upon the
distribution being used.

• The Oracle Big Data Appliance cluster distribution comes with a pre-installed
setup, but you must follow few steps in Installing Image Processing Framework for
Oracle Big Data Appliance Distribution to get it working.

• For a commodity distribution, follow the instructions in Installing the Image
Processing Framework for Other Distributions (Not Oracle Big Data Appliance).

After performing the installation, verify it (see Post-installation Verification of the
Image Processing Framework).

1.6.1 Installing Image Processing Framework for Oracle Big Data Appliance Distribution
The Oracle Big Data Appliance distribution comes with a pre-installed configuration.
However, perform the following actions to ensure that it works.

• Identify the ALL_ACCESS_FOLDER under /opt/shareddir/spatial.

• Make the libproj.so (Proj.4) Cartographic Projections Library accessible to
the users, and copy libproj.so to the gdal/lib folder under /opt/oracle/
oracle-spatial-graph/spatial/gdal/lib, as follows:

cp libproj.so /opt/oracle/oracle-spatial-graph/spatial/gdal/lib

• Provide read and execute permissions for the libproj.so library for all users, as
follows:

chmod 755 /opt/oracle/oracle-spatial-graph/spatial/gdal/lib/libproj.so

1.6.2 Installing the Image Processing Framework for Other Distributions (Not Oracle Big
Data Appliance)

For Big Data Spatial and Graph in environments other than the Big Data Appliance,
follow the instructions in this section.

1.6.2.1 Prerequisites for Installing the Image Processing Framework for Other
Distributions

• Ensure that HADOOP_LIB_PATH is under /usr/lib/hadoop. If it is not there,
find the path and use it as it your HADOOP_LIB_PATH.

• Install NFS.

• Have at least one folder, referred in this document as SHARED_FOLDER, in the
Resource Manager node accessible to every Node Manager node through NFS.

• Provide write access to all the users involved in job execution and the yarn users to
this SHARED_FOLDER

• Download oracle-spatial-graph-<version>.x86_64.rpm from the Oracle
e-delivery web site.

Installing and Configuring the Big Data Spatial Image Processing Framework

1-4 User's Guide and Reference

• Execute oracle-spatial-graph-<version>.x86_64.rpm using the rpm
command.

• After rpm executes, verify that a directory structure created at /opt/oracle/
oracle-spatial-graph/spatial contains these folders: console, examples,
jlib, gdal, and tests. Additionally, index.html describes the content, and
HadoopRasterProcessorAPI.zip contains the Javadoc for the API..

1.6.2.2 Installing the Image Processing Framework for Other Distributions

1. Make the libproj.so (Proj.4) Cartographic Projections Library accessible to
the users, and copy libproj.so to gdal/lib under /opt/oracle/oracle-
spatial-graph/spatial/raster/gdal/lib, as follows:

cp libproj.so /opt/oracle/oracle-spatial-graph/spatial/gdal/lib

2. Provide read and execute permissions for the libproj.so library for all users, as
follows::

chmod 755 /opt/oracle/oracle-spatial-graph/spatial/gdal/lib/libproj.so

3. In the Resource Manager Node, copy the gdal data folder under /opt/oracle/
oracle-spatial-graph/spatial/gdal and gdalplugins under /opt/
oracle/oracle-spatial-graph/spatial/gdal into the SHARED_FOLDER
as follows:

cp -R /opt/oracle/oracle-spatial-graph/spatial/raster/gdal/
data SHARED_FOLDER

4. Create a directory ALL_ACCESS_FOLDER under SHARED_FOLDER with write
access for all users involved in job execution. The hdfs user is the one shown here
to run tests, but also consider the yarn user in the write access because job results
are written by this user. Group access may be used to configure this.

Go to the shared folder.

cd SHARED_FOLDER

Create a new directory.

mkdir ALL_ACCESS_FOLDER

Provide write access.

chmod 777 ALL_ACCESS_FOLDER

5. Copy the data folder under /opt/oracle/oracle-spatial-graph/spatial/
demo into ALL_ACCESS_FOLDER.

cp -R /opt/oracle/oracle-spatial-graph/spatial/raster/
examples/data ALL_ACCESS_FOLDER

6. Provide write access to the data/xmls folder as follows (or just ensure that users
executing the jobs, including tests and examlpes, have write access):

chmod 777 ALL_ACCESS_FOLDER/data/xmls/

1.6.3 Post-installation Verification of the Image Processing Framework
Several test scripts are provided: one to test the image loading functionality, another to
test the image processing functionality, and another to test a processing class for slope

Installing and Configuring the Big Data Spatial Image Processing Framework

Big Data Spatial and Graph Overview 1-5

calculation in a DEM and a map algebra operation. Execute these scripts to verify a
successful installation of image processing framework.

To execute the scripts, make sure the current user is the hdfs user. Switch to this user
before executing the scripts, and make sure you have provided this user with access to
write to the necessary directories.

sudo su - hdfs

1.6.3.1 Image Loading Test Script

This script loads a set of four test rasters into the ohiftest folder in HDFS, 3 rasters
of byte data type and 3 bands and 1 raster (DEM) of float32 data type and 1 band. No
parameters are required for OBDA environments and a single parameter with the
$ALL_ACCESS_FOLDER value is required for non-OBDA environments.

Internally, the job creates a split for every raster to load. Split size depends on the
block size configuration; for example, if a block size >= 64MB is configured, 4 mappers
will run; and as a result the rasters will be loaded in HDFS and a corresponding
thumbnail will be created for visualization. An external image editor is required to
visualize the thumbnails, and an output path of these thumbnails is provided to the
users upon successful completion of the job.

The test script can be found here:

/oracle/oracle-spatial-graph/raster/tests/runimageloader.sh

For ODBA environments, enter:

./runimageloader.sh

For non-ODBA environments, enter:

./runimageloader.sh ALL_ACCESS_FOLDER

Upon successful execution, the message GENERATED OHIF FILES ARE LOCATED
IN HDFS UNDER is displayed, with the path in HDFS where the files are located (this
path depends on the definition of ALL_ACCESS_FOLDER) and a list of the created
images and thumbnails on HDFS. The output may include:

“THUMBNAILS CREATED ARE:
--
total 13532
drwxr-xr-x 2 yarn yarn 4096 Sep 9 13:54 .
drwxr-xr-x 3 yarn yarn 4096 Aug 27 11:29 ..
-rw-r--r-- 1 yarn yarn 3214053 Sep 9 13:54 hawaii.tif.ohif.tif
-rw-r--r-- 1 yarn yarn 3214053 Sep 9 13:54 kahoolawe.tif.ohif.tif
-rw-r--r-- 1 yarn yarn 3214053 Sep 9 13:54 maui.tif.ohif.tif
-rw-r--r-- 1 yarn yarn 4182040 Sep 9 13:54 NapaDEM.tif.ohif.tif
YOU MAY VISUALIZE THUMBNAILS OF THE UPLOADED IMAGES FOR REVIEW FROM THE FOLLOWING
PATH:

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

NOT ALL THE IMAGES WERE UPLOADED CORRECTLY, CHECK FOR HADOOP LOGS

1.6.3.2 Image Processor Test Script

This script executes the processor job by setting three source rasters of Hawaii islands
and some coordinates that includes all three. The job will create a mosaic based on

Installing and Configuring the Big Data Spatial Image Processing Framework

1-6 User's Guide and Reference

these coordinates and resulting raster should include the three rasters combined in a
single one.

runimageloader.sh should be executed as a prerequisite, so that the source rasters
exist in HDFS. These are 3 band rasters of byte data type.

No parameters are required for OBDA environments, and a single parameter "-s" with
the $ALL_ACCESS_FOLDER value is required for non-OBDA environments.

Additionally, if the output should be stored in HDFS, the "-o" parameters must be
used to set the HDFS folder where the mosaic output will be stored.

Internally the job filters the tiles using the coordinates specified in the configuration
input, xml, only the required tiles are processed in a mapper and finally in the reduce
phase, all of them are put together into the resulting mosaic raster.

The test script can be found here:

/oracle/oracle-spatial-graph/raster/tests/runimageprocessor.sh

For ODBA environments, enter:

./runimageprocessor.sh

For non-ODBA environments, enter:

./runimageprocessor.sh -s ALL_ACCESS_FOLDER

Upon successful execution, the message EXPECTED OUTPUT FILE IS is displayed,
with the path in HDFS where the files are located (this path depends on the definition
of ALL_ACCESS_FOLDER) and a list of the created images and thumbnails on HDFS.
The output may include:

ALL_ACCESS_FOLDER/processtest/hawaiimosaic.tif
total 9452
drwxrwxrwx 2 hdfs hdfs 4096 Sep 10 09:12 .
drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..
-rwxrwxrwx 1 yarn yarn 4741101 Sep 10 09:12 hawaiimosaic.tif

MOSAIC IMAGE GENERATED
--
YOU MAY VISUALIZE THE MOSAIC OUTPUT IMAGE FOR REVIEW IN THE FOLLOWING PATH:
ALL_ACCESS_FOLDER/processtest/hawaiimosaic.tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

MOSAIC WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVIEW THE PROBLEM

To test the output storage in HDFS, use the following command

For ODBA environments, enter:

./runimageprocessor.sh -o hdfstest

For non-ODBA environments, enter:

./runimageprocessor.sh -s ALL_ACCESS_FOLDER -o hdfstest

1.6.3.3 Image Processor DEM Test Script

This script executes the processor job by setting a DEM source raster of North Napa
Valley and some coordinates that surround it. The job will create a mosaic based on

Installing and Configuring the Big Data Spatial Image Processing Framework

Big Data Spatial and Graph Overview 1-7

these coordinates and will also calculate the slope on it by setting a processing class in
the mosaic configuration XML.

runimageloader.sh should be executed as a prerequisite, so that the source rasters
exist in HDFS. These are 3 band rasters of byte data type.

No parameters are required for OBDA environments, and a single parameter "-s" with
the $ALL_ACCESS_FOLDER value is required for non-OBDA environments.

The test script can be found here:

/oracle/oracle-spatial-graph/raster/tests/runimageprocessordem.sh

For ODBA environments, enter:

./runimageprocessordem.sh

For non-ODBA environments, enter:

./runimageprocessordem.sh -s ALL_ACCESS_FOLDER

Upon successful execution, the message EXPECTED OUTPUT FILE:
ALL_ACCESS_FOLDER/processtest/NapaSlope.tif is displayed, with the path
in HDFS where the files are located (this path depends on the definition of
ALL_ACCESS_FOLDER) and a list of the created images and thumbnails on HDFS.
The output may include:

EXPECTED OUTPUT FILE: ALL_ACCESS_FOLDER/processtest/NapaSlope.tif
total 4808
drwxrwxrwx 2 hdfs hdfs 4096 Sep 10 09:42 .
drwxrwxrwx 9 zherena dba 4096 Sep 9 13:50 ..
-rwxrwxrwx 1 yarn yarn 4901232 Sep 10 09:42 NapaSlope.tif
MOSAIC IMAGE GENERATED
--

YOU MAY VISUALIZE THE MOSAIC OUTPUT IMAGE FOR REVIEW IN THE FOLLOWING PATH:
ALL_ACCESS_FOLDER/processtest/NapaSlope.tif”

If the installation and configuration were not successful, then the output is not
generated and a message like the following is displayed:

MOSAIC WAS NOT SUCCESSFULLY CREATED, CHECK HADOOP LOGS TO REVIEW THE PROBLEM

You may also test the “if” algebra function, where every pixel in this raster with value
greater than 2500 will be replaced by the value you set in the command line using the
“–c” flag. For example:

For ODBA environments, enter:

./runimageprocessordem.sh –c 8000

For non-ODBA environments, enter:

./runimageprocessordem.sh -s ALL_ACCESS_FOLDER –c 8000

You can visualize the output file and notice the difference between simple slope
calculation and this altered output, where the areas with pixel values greater than 2500
look more clear.

Installing and Configuring the Big Data Spatial Image Processing Framework

1-8 User's Guide and Reference

1.7 Installing and Configuring the Big Data Spatial Image Server
You can access the image processing framework through the Oracle Big Data Spatial
Image Server, which provides a web interface for loading and processing images.

Installing and configuring the Spatial Image Server depends upon the distribution
being used.

• Installing and Configuring the Image Server for Oracle Big Data Appliance

• Installing and Configuring the Image Server Web for Other Systems (Not Big Data
Appliance)

After you perform the installation, verify it (see Post-installation Verification Example
for the Image Server Console).

1.7.1 Installing and Configuring the Image Server for Oracle Big Data Appliance
Follow the instructions in this topic.

• Prerequisites for installing Image Server on Oracle Big Data Appliance

• Installing Image Server Web on an Oracle Big Data Appliance

• Configuring the Environment

1.7.1.1 Prerequisites for installing Image Server on Oracle Big Data Appliance

1. Download the latest Jetty core component binary from the Jetty download page
http://www.eclipse.org/jetty/downloads.php onto the Oracle DBA
Resource Manager node.

2. Unzip the imageserver.war file into the jetty webapps directory or any other
directory of choice as follows:

unzip /opt/oracle/oracle-spatial-graph/spatial/jlib/
imageserver.war -d $JETTY_HOME/webapps/imageserver

Note:

The directory or location under which you unzip the file is known as
$JETTY_HOME in this procedure.

3. Copy Hadoop dependencies as follows:

cp /opt/cloudera/parcels/CDH/lib/hadoop/client/* $JETTY_HOME/
webapps/imageserver/WEB-INF/lib/

4. Edit the $JETTY_HOME/start.ini file and change the property jsp-
impl=apache to jsp-impl=glassfish optionally. You can download these jars
from http://mvnrepository.com/ or another Apache jar provider:

xalan-2.7.1.jar

xercesImpl-2.11.0.jar

xml-apis-1.4.01.jar

serializer-2.7.1.jar

Installing and Configuring the Big Data Spatial Image Server

Big Data Spatial and Graph Overview 1-9

http://www.eclipse.org/jetty/downloads.php
http://mvnrepository.com/

5. Copy these jars to $JETTY_HOME/lib/apache-jsp.

6. Check the version by running: $JETTY_HOME/java -jar start.jar –
version

1.7.1.2 Installing Image Server Web on an Oracle Big Data Appliance

1. Copy the gdal.jar file under /opt/oracle/oracle-spatial-graph/
spatial/jlib/gdal.jar to $JETTY_HOME/lib/ext.

2. Copy the /opt/oracle/oracle-spatial-graph/spatial/conf/jetty-
imgserver-realm.properties file to $JETTY_HOME/etc folder

3. Edit the $JETTY_HOME/etc/jetty-imgserver-realm.properties file to
add a password and role

a. Remove the <password> and type a new password.

b. Remove the <> from the <admin_role> text and keep the admin_role.

4. Start the jetty server by running: java -jar $JETTY_HOME/start.jar.

1.7.1.3 Configuring the Environment

1. Type the http://thehost:8080/imageserver/console.jsp address in
your browser address bar to open the console.

2. Log in to the console using the credentials you created in “Installing Image Server
Web on an Oracle Big Data Appliance.”

3. From the Configuration tab in the Hadoop Configuration Parameters section,
depending on the cluster configuration change these three properties

a. fs.defaultFS: Type the active namenode of your cluster in the format
hdfs://<namenode>:8020 (Check with the administrator for this
information).

b. yarn.resourcemanager.scheduler.address: Active Resource
manager of your cluster. <shcedulername>:8030. This is the Scheduler
address.

c. yarn.resourcemanager.address: Active Resource Manager address in
the format <resourcename>:8032

Note:

Keep the default values for the rest of the configuration. They are pre-loaded
for your Oracle Big Data Appliance cluster environment.

4. Click Apply Changes to save the changes.

Tip:

You can review the missing configuration information under the Hadoop
Loader tab of the console.

Installing and Configuring the Big Data Spatial Image Server

1-10 User's Guide and Reference

1.7.2 Installing and Configuring the Image Server Web for Other Systems (Not Big Data
Appliance)

Follow the instructions in this topic.

• Prerequisites for Installing the Image Server on Other Systems

• Installing the Image Server Web on Other Systems

• Configuring the Environment

1.7.2.1 Prerequisites for Installing the Image Server on Other Systems

• Follow the instructions specified in “Prerequisites for Installing the Image
Processing Framework for Other Distributions.”

• Follow the instructions specified in “Installing the Image Processing Framework
for Other Distributions.”

• Follow the instructions specified in “Configuring the Environment.”

1.7.2.2 Installing the Image Server Web on Other Systems

• Follow the instructions specified in “Prerequisites for installing Image Server on
Oracle Big Data Appliance.”

• Follow the instructions specified in “Installing Image Server Web on an Oracle Big
Data Appliance.”

• Follow the instructions specified in “Configuring the Environment.”

1.7.2.3 Configuring the Environment

1. Type the http://thehost:8080/imageserver/console.jsp address in
your browser address bar to open the console.

2. Log in to the console using the credentials you created in “Installing Image Server
Web on an Oracle Big Data Appliance.”

3. From the Configuration tab in the Hadoop Configuration Parameters section,
depending on the cluster configuration change these three properties

a. Specify a shared folder to start browsing the images. This folder must be
shared between the cluster and NFS mountpoint (SHARED_FOLDER).

b. Create a child folder named saveimages under Start with full write access.
For example, if Start=/home, then saveimages=/home/saveimages.

c. If the cluster requires a mount point to access the SHARED_FOLDER, specify
a mount point. For example, /net/home. Else, leave it blank and proceed.

d. Type the folder path that contains the Hadoop native libraries and additional
libraries (HADOOP_LIB_PATH).

e. yarn.application.classpath: Type the classpath for the Hadoop to find the
required jars and dependencies. Usually this is under /usr/lib/hadoop.

Installing and Configuring the Big Data Spatial Image Server

Big Data Spatial and Graph Overview 1-11

Note:

Keep the default values for the rest of the configuration. They are pre-loaded
for your Oracle Big Data Appliance cluster environment.

4. Click Apply Changes to save the changes.

Tip:

You can review the missing configuration information under the Hadoop
Loader tab of the console.

1.7.3 Post-installation Verification Example for the Image Server Console
In this example, you will:

• Load the images from local server to HDFS Hadoop cluster.

• Run a job to create a mosaic image file and a catalog with several images.

• View the mosaic image.

Related subtopics:

• Loading images from the local server to HDFS Hadoop cluster

• Creating a mosaic image and catalog

1.7.3.1 Loading images from the local server to HDFS Hadoop cluster

1. Open (http://<hostname>:8080/imageserver/console.jsp) the Image
Server Console.

2. Log in using the default user/password as admin/admin.

3. Go to the Hadoop Loader tab.

4. Click Open and browse to the demo folder that contains a set of Hawaii images.
They can be found at /opt/shareddir/spatial/demo/imageserver/
images.

5. Select the images folder and click Load images.

Wait for the message, 'Images loaded successfully'.

Note:

If no errors were shown, then you have successfully installed the Image
Loader web interface.

1.7.3.2 Creating a mosaic image and catalog

1. Go to the Raster Image processing tab.

2. From the Catalog menu select Catalog > New Catalog > HDFS Catalog.

A new catalog is created.

Installing and Configuring the Big Data Spatial Image Server

1-12 User's Guide and Reference

3. From the Imagery menu select Imagery > Add hdfs image.

4. Browse the HDFS host and add images.

A new file tree gets created with all the images you just loaded from your host.

5. Browse the newdata folder and verify the images.

6. Select the images listed in the pre-visualizer and add click Add.

The images are added to the bottom sub-panel.

7. Click Add images.

The images are added to the main catalog.

8. Save the catalog.

9. From the Imagery menu select Imagery > Mosaic.

10. Click Load default configuration file, browse to /opt/shareddir/
spatial/demo/imageserver and select testFS.xml.

Note:

The default configuration file testFS.xml is included in the demo.

11. Click Create Mosaic.

Wait for the image to be created.

12. Optionally, to download and view the image click Download.

1.8 Installing Oracle Big Data Spatial Hadoop Vector Console
To install the Oracle Big Data Spatial Hadoop vector console, follow the instructions in
this topic.

• Assumptions and Prerequisite Libraries

• Installing Spatial Hadoop Vector Console on Oracle Big Data Appliance

• Installing Spatial Hadoop Vector Console for Other Systems (Not Big Data
Appliance)

• Configuring Spatial Hadoop Vector Console on Oracle Big Data Appliance

• Configuring Spatial Hadoop Vector Console for Other Systems (Not Big Data
Appliance)

1.8.1 Assumptions and Prerequisite Libraries
The following assumptions and prerequisites apply for installing and configure the
Spatial Hadoop Vector Console.

Installing Oracle Big Data Spatial Hadoop Vector Console

Big Data Spatial and Graph Overview 1-13

1.8.1.1 Assumptions

• The API and jobs described here run on a CDH5.4, Hortonworks 2.2.4.2, or similar
Hadoop environment.

• Java 8 or newer versions are present in your environment.

1.8.1.2 Prerequisite Libraries

In addition to the Hadoop environment jars, the libraries listed here are required by
the Vector Analysis API.

sdohadoop-vector.jar
sdoutil.jar
sdoapi.jar
ojdbc.jar
commons-fileupload-1.3.1.jar
commons-io-2.4.jar
jackson-annotations-2.1.4.jar
jackson-core-2.1.4.jar
jackson-core-asl-1.8.1.jar
jackson-databind-2.1.4.jar
javacsv.jar
lucene-analyzers-common-4.6.0.jar
lucene-core-4.6.0.jar
lucene-queries-4.6.0.jar
lucene-queryparser-4.6.0.jar
mvsuggest_core.jar
sqlite-jdbc-3.7.15-M1.jar

1.8.2 Installing Spatial Hadoop Vector Console on Oracle Big Data Appliance

You can install the Spatial Hadoop vector console on Big Data Appliance either by
using the provided script or by performing a manual configuration.. To use the
provided script:

1. Run the following script:

sudo /home/osg/configure-jetty/install-jetty-bdsg.sh

If the active nodes have change after the installation, then update the
configuration file as described in Configuring Spatial Hadoop Vector Console on
Oracle Big Data Appliance.

2. Start the Jetty server:

cd /opt/oracle/oracle-spatial-graph/spatial/jetty
java -jar start.jar

To perform a manual configuration, follow these steps.

1. Download the latest Jetty core component binary from the Jetty download page
http://www.eclipse.org/jetty/downloads.php onto the Oracle DBA
Resource Manager node.

2. Unzip the spatialviewer.war file into the jetty webapps directory as follows:

unzip /opt/oracle/oracle-spatial-graph/spatial/vector/
console/spatialviewer.war -d $JETTY_HOME/webapps/
spatialviewer

Installing Oracle Big Data Spatial Hadoop Vector Console

1-14 User's Guide and Reference

http://www.eclipse.org/jetty/downloads.php

Note:

The directory or location under which you unzip the file is known as
$JETTY_HOME in this procedure.

3. Copy Hadoop dependencies as follows:

cp /opt/cloudera/parcels/CDH/lib/hadoop/client/* $JETTY_HOME/
webapps/spatialviewer/WEB-INF/lib/

4. Complete the configuration steps mentioned in the “Configuring Spatial Hadoop
Vector Console on Oracle Big Data Appliance.”

5. Start the jetty server. $JETTY_HOME/java -Djetty.deploy.scanInterval=0
-jar start.jar

6. Optionally, upload sample data (used with examples in other topics) to HDFS:

a. $JETTY_HOME/java -Djetty.deploy.scanInterval=0 -jar
start.jar

b. sudo -u hdfs hadoop fs -put /opt/oracle/oracle-spatial-
graph/spatial/vector /examples/data/tweets.json /user/
oracle/bdsg/

1.8.3 Installing Spatial Hadoop Vector Console for Other Systems (Not Big Data
Appliance)

Follow the steps for manual configuration described in “Installing Spatial Hadoop
Vector Console on Oracle Big Data Appliance.” However, in step 3 replace the
path /opt/cloudera/parcels/CDH/lib/ with the actual library path, which by
default is /usr/lib/.

1.8.4 Configuring Spatial Hadoop Vector Console on Oracle Big Data Appliance

1. Edit the configuration file $JETTY_HOME/webapps/spatialviewer/conf/
console-conf.xml to specify your own data for sending email and for other
configuration parameters.

Follow these steps with the configuration parameters

a. Edit the Notification URL: This is the URL where the console server is
running. It has to be visible to the Hadoop cluster to notify the end of the jobs.
This is an example settings: <baseurl>http:// hadoop.console.url:
8080</baseurl>

b. Edit the directory with temporary hierarchical indexes: an HDFS path that
will contain temporary data on hierarchical relationships. Example::
<hierarchydataindexpath>hdfs://hadoop.cluster.url:8020/
user/myuser/hierarchyIndexPath</hierarchydataindexpath>

c. Edit the HDFS directory that will contain the MVSuggest generated index.
Example: <mvsuggestindex> hdfs://hadoop.cluster.url:8020/
user/myuser /mvSuggestIndex</mvsuggestindex>

Installing Oracle Big Data Spatial Hadoop Vector Console

Big Data Spatial and Graph Overview 1-15

d. If necessary, edit the URL used to get the eLocation background maps.
Example: <elocationmvbaseurl>http://elocation.oracle.com/
mapviewer</elocationmvbaseurl>

e.

f. Edit the HDFS directory that will contain the index metadata. Example:
<indexmetadatapath>hdfs:// hadoop.cluster.url:8020/user/
myuser/indexMetadata</indexmetadatapath>

g. Edit the HDFS directory with temporary data used by the explore data
processes. Example: <exploretempdatapath>hdfs://
hadoop.cluster.url:8020/user/myuser/
exploreTmp<exploretempdatapath>

h. Edit the eneral Hadoop jobs configuration: The console uses two Hadoop
jobs. The first is used to create a spatial index on existing files in HDFS and
the second is used to generate displaying results based on the index. One part
of the configuration is common to both jobs and another is specific to each
job. The common configuration can be found within the
<hadoopjobs><configuration> elements. An example configuration is
given here:

<hadoopjobs>
 <configuration>
 <property>
 <!--hadoop user. The user is a mandatory property.-->
 <name>hadoop.job.ugi</name>
 <value>hdfs</value>
 </property>

 <property>
 <!-- like defined in core-site.xml
 If in core-site.xml the path fs.defaultFS is define as the nameservice
ID
 (High Availability configuration) then set the full address and IPC
port
 of the currently active name node. The service is define in the file
hdfs-site.xml.-->
 <name>fs.defaultFS</name>
 <value>hdfs://hadoop.cluster.url:8020</value>
 </property>

 <property>
 <!-- like defined in mapred-site.xml -->
 <name>mapreduce.framework.name</name>
 <value>yarn</value>
 </property>

 <property>
 <!-- like defined in yarn-site.xml -->
 <name>yarn.resourcemanager.scheduler.address</name>
 <value>hadoop.cluster.url:8030</value>
 </property>

 <property>
 <!-- like defined in yarn-site.xml -->
 <name>yarn.resourcemanager.address</name>
 <value>hadoop.cluster.url:8032</value>
 </property>

Installing Oracle Big Data Spatial Hadoop Vector Console

1-16 User's Guide and Reference

 <property>
 <!-- like defined in yarn-site.xml (full path) -->
 <name>yarn.application.classpath</name>
 <value>/etc/hadoop/conf/,/opt/cloudera/parcels/CDH/lib/
hadoop/*,/opt/cloudera/parcels/CDH/lib/hadoop/lib/*,/opt/cloudera/
parcels/CDH/lib/hadoop-hdfs/*,/opt/cloudera/parcels/CDH/lib/hadoop-
hdfs/lib/*,/opt/cloudera/parcels/CDH/lib/hadoop-yarn/*,/opt/cloudera/
parcels/CDH/lib/hadoop-yarn/lib/*,/opt/cloudera/parcels/CDH/lib/hadoop-
mapreduce/*,/opt/cloudera/parcels/CDH/lib/hadoop-mapreduce/lib/*</value>
 </property>
 </configuration>
 <hadoopjobs>

2. Create an index job specific configuration. Additional Hadoop parameters can be
specified for the job that creates the spatial indexes. An example additional
configuration is:

<hadoopjobs>
 <configuration>
 ...
 </configuration>
 <indexjobadditionalconfiguration>
 <property>
 <!-- Increase the mapred.max.split.size, so that less mappers are
allocated in slot and thus reduces the mapper initializing overhead. -->
 <name>mapred.max.split.size</name>
 <value>1342177280</value>
 </property>
 </indexjobadditionalconfiguration>
<hadoopjobs>

3. Create a specific configuration for the job that generates the categorization results.
The following is an example of property settings:

<hadoopjobs>
 <configuration>
 ...
 </configuration>

 <indexjobadditionalconfiguration>
 ...
 </indexjobadditionalconfiguration>

 <hierarchicaljobadditionalconfiguration>
 <property>
 <!-- Increase the mapred.max.split.size, so that less mappers are
allocated in slot and thus reduces the mapper initializing overhead. -->
 <name>mapred.max.split.size</name>
 <value>1342177280</value>
 </property>
 </hierarchicaljobadditionalconfiguration>
<hadoopjobs>

4. Specify the Notification emails: The email notifications are sent to notify about the
job completion status. This is defined within the <notificationmails>
element. It is mandatory to specify a user (<user>), password (<password>) and
sender email (<mailfrom>). In the <configuration> element, the
configuration properties needed for the Java Mail must be set. This example is a
typical configuration to send mails via SMTP server using a SSL connection:

Installing Oracle Big Data Spatial Hadoop Vector Console

Big Data Spatial and Graph Overview 1-17

<notificationmails>
 <!--Authentication parameters. The Authentication parameters are mandatory.-->
 <user>user@mymail.com</user>
 <password>mypassword</password>
 <mailfrom>user@mymail.com</mailfrom>

 <!--Parameters that will be set to the system properties. Below the
parameters needed to send mails via SMTP server using a SSL connection. -->

 <configuration>
 <property>
 <name>mail.smtp.host</name>
 <value>mail.host.com</value>
 </property>

 <property>
 <name>mail.smtp.socketFactory.port</name>
 <value>myport</value>
 </property>

 <property>
 <name>mail.smtp.socketFactory.class</name>
 <value>javax.net.ssl.SSLSocketFactory</value>
 </property>

 <property>
 <name>mail.smtp.auth</name>
 <value>true</value>
 </property>
 </configuration>
</notificationmails>

1.8.5 Configuring Spatial Hadoop Vector Console for Other Systems (Not Big Data
Appliance)

Follow the steps mentioned in “Configuring Spatial Hadoop Vector Console on Oracle
Big Data Appliance.” However, in the step (General Hadoop Job
Configuration), in the Hadoop property yarn.application.classpath
replace the /opt/cloudera/parcels/CDH/lib/ with the actual library path,
which by default is /usr/lib/.

1.9 Installing Property Graph Support on a CDH Cluster or Other
Hardware

You can use property graphs on either Oracle Big Data Appliance or commodity
hardware.

• Apache HBase Prerequisites

• Property Graph Installation Steps

• About the Property Graph Installation Directory

• Optional Installation Task for In-Memory Analytics

Installing Property Graph Support on a CDH Cluster or Other Hardware

1-18 User's Guide and Reference

See Also:

Configuring Property Graph Support

1.9.1 Apache HBase Prerequisites
The following prerequisites apply to installing property graph support in HBase.

• Linux operating system

• Cloudera's Distribution including Apache Hadoop (CDH)

For the software download, see: http://www.cloudera.com/content/
cloudera/en/products-and-services/cdh.html

• Apache HBase

• Java Development Kit

Details about supported versions of these products, including any interdependencies,
will be provided in a My Oracle Support note.

1.9.2 Property Graph Installation Steps
To install property graph support, follow these steps.

1. Unzip the software package:

rpm -i oracle-spatial-graph-<version>.x86_64.rpm

By default, the software is installed in the following directory: /opt/oracle/

After the installation completes, the opt/oracle/oracle-spatial-graph
directory exists and includes a property_graph subdirectory.

2. Set the JAVA_HOME environment variable. For example:

setenv JAVA_HOME /usr/local/packages/jdk7

3. Set the PGX_HOME environment variable. For example:

setenv PGX_HOME /opt/oracle/oracle-spatial-graph/pgx

4. If HBase will be used, set the HBASE_HOME environment variable in all HBase
region servers in the Apache Hadoop cluster. (HBASE_HOME specifies the location
of the hbase installation directory.) For example:

setenv HBASE_HOME /usr/lib/hbase

Note that on some installations of Big Data Appliance, Apache HBase is placed in a
directory like the following: /opt/cloudera/parcels/
CDH-5.3.3-1.cdh5.3.3.p0.5/lib/hbase/

5. If HBase will be used, copy the data access layer library into $HBASE_HOME/lib.
For example:

cp /opt/oracle/oracle-spatial-graph/property_graph/lib/sdopgdal*.jar $HBASE_HOME/
lib

Installing Property Graph Support on a CDH Cluster or Other Hardware

Big Data Spatial and Graph Overview 1-19

http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html

6. Tune the HBase or Oracle NoSQL Database configuration, as described in other
tuning topics.

7. Log in to Cloudera Manager as the admin user, and restart the HBase service.
Restarting enables the Region Servers to use the new configuration settings.

1.9.3 About the Property Graph Installation Directory
The installation directory for Oracle Big Data Spatial and Graph property graph
features has the following structure:

$ tree -dFL 2 /opt/oracle/oracle-spatial-graph/property_graph/
/opt/oracle/oracle-spatial-graph/property_graph/
|-- dal
| |-- groovy
| |-- opg-solr-config
| `-- webapp
|-- data
|-- doc
| |-- dal
| `-- pgx
|-- examples
| |-- dal
| |-- pgx
| `-- pyopg
|-- lib
|-- librdf
`-- pgx
 |-- bin
 |-- conf
 |-- groovy
 |-- scripts
 |-- webapp
 `-- yarn

1.9.4 Optional Installation Task for In-Memory Analytics
Follow this installation task if property graph support is installed on a client without
Hadoop, and you want to read graph data stored in the Hadoop Distributed File
System (HDFS) into in-memory analytics and write the results back to the HDFS,
and/or use Hadoop NextGen MapReduce (YARN) scheduling to start, monitor and
stop in-memory analytics

• Installing and Configuring Hadoop

• Running In-Memory Analytics on Hadoop

1.9.4.1 Installing and Configuring Hadoop

To install and configure Hadoop, follow these steps.

1. Download the tarball for a supported version of the Cloudera CDH.

2. Unpack the tarball into a directory of your choice. For example:

tar xvf hadoop-2.5.0-cdh5.2.1.tar.gz -C /opt

3. Have the HADOOP_HOME environment variable point to the installation directory.
For example.

export HADOOP_HOME=/opt/hadoop-2.5.0-cdh5.2.1

Installing Property Graph Support on a CDH Cluster or Other Hardware

1-20 User's Guide and Reference

4. Add $HADOOP_HOME/bin to the PATH environment variable. For example:

export PATH=$HADOOP_HOME/bin:$PATH

5. Configure $HADOOP_HOME/etc/hadoop/hdfs-site.xml to point to the HDFS
name node of your Hadoop cluster.

6. Configure $HADOOP_HOME/etc/hadoop/yarn-site.xml to point to the
resource manager node of your Hadoop cluster.

7. Configure the fs.defaultFS field in $HADOOP_HOME/etc/hadoop/core-
site.xml to point to the HDFS name node of your Hadoop cluster.

1.9.4.2 Running In-Memory Analytics on Hadoop

When running a Java application using in-memory analytics and HDFS, make sure
that $HADOOP_HOME/etc/hadoop is on the classpath, so that the configurations get
picked up by the Hadoop client libraries. However, you do not need to do this when
using the In-Memory Analytics Shell, because it adds $HADOOP_HOME/etc/hadoop
automatically to the classpath if HADOOP_HOME is set.

You do not need to put any extra Cloudera Hadoop libraries (JAR files) on the
classpath. The only time you need the YARN libraries is when starting In-Memory
Analytics as a YARN service. This is done with the yarn command, which
automatically adds all necessary JAR files from your local installation to the classpath.

You are now ready to load data from HDFS or start In-Memory Analytics as a YARN
service. For further information about Hadoop, refer to the CDH 5.2.x documentation.

1.10 Installing and Configuring Multimedia Analytics Support
To use the Multimedia analytics feature, the video analysis framework must be
installed and configured.

• Assumptions and Libraries for Multimedia Analytics

• Transcoding Software (Options)

1.10.1 Assumptions and Libraries for Multimedia Analytics
If you have licensed Oracle Big Data Spatial and Graph with Oracle Big Data
Appliance, the video analysis framework for Multimedia analytics is already installed
and configured. However, you must set $MMA_HOME to point to /opt/oracle/
oracle-spatial-graph/multimedia.

Otherwise, you can install the framework on Cloudera CDH 5 or similar Hadoop
environment, as follows:

1. Install the framework by using the following command on each node on the
cluster:

rpm2cpio oracle-spatial-graph-<version>.x86_64.rpm | cpio -idmv

2. Set $MMA_HOME to point to /opt/oracle/oracle-spatial-graph/
multimedia.

3. Identify the locations of the following libraries:

• Hadoop jar files (available in $HADOOP_HOME/jars)

Installing and Configuring Multimedia Analytics Support

Big Data Spatial and Graph Overview 1-21

• Video processing libraries (see Transcoding Software (Options)

• OpenCV libraries (available with the product)

4. If necessary, install the desired video processing software to transcode video data
(see Transcoding Software (Options)).

1.10.2 Transcoding Software (Options)
The following options are available for transcoding video data:

• JCodec

• FFmpeg

• Third-party transcoding software

To use Multimedia analytics with JCodec (which is included with the product), when
running the Hadoop job to recognize faces, set the
oracle.ord.hadoop.ordframegrabber property to the following value:
oracle.ord.hadoop.decoder.OrdJCodecFrameGrabber

To use Multimedia analytics with FFmpeg:

1. Download FFmpeg from: https://www.ffmpeg.org/.

2. Install FFmpeg on the Hadoop cluster.

3. Set the oracle.ord.hadoop.ordframegrabber property to the following
value: oracle.ord.hadoop.decoder.OrdFFMPEGFrameGrabber

To use Multimedia analytics with custom video decoding software, implement the
abstract class oracle.ord.hadoop.decoder.OrdFrameGrabber. See the Javadoc
for more details

Installing and Configuring Multimedia Analytics Support

1-22 User's Guide and Reference

2
Using Big Data Spatial and Graph with

Spatial Data

This chapter provides conceptual and usage information about loading, storing,
accessing, and working with spatial data in a Big Data environment.

• About Big Data Spatial and Graph Support for Spatial Data

• Oracle Big Data Vector and Raster Data Processing

• Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data
Processing

• Loading an Image to Hadoop Using the Image Loader

• Processing an Image Using the Oracle Spatial Hadoop Image Processor

• Loading and Processing an Image Using the Oracle Spatial Hadoop Raster
Processing API

• Oracle Big Data Spatial Vector Analysis

• Using the Oracle Big Data Spatial and Graph Vector Console

• Using Oracle Big Data Spatial and Graph Image Server Console

2.1 About Big Data Spatial and Graph Support for Spatial Data
Spatial data represents the location characteristics of real or conceptual objects in
relation to the real or conceptual space on a Geographic Information System (GIS) or
other location-based application.

Oracle Big Data Spatial and Graph features enable spatial data to be stored, accessed,
and analyzed quickly and efficiently for location-based decision making.

These features are used to geotag, enrich, visualize, transform, load, and process the
location-specific two and three dimensional geographical images, and manipulate
geometrical shapes for GIS functions.

• What is Big Data Spatial and Graph on Apache Hadoop?

• Advantages of Oracle Big Data Spatial and Graph

• Oracle Big Data Spatial Features and Functions

• Oracle Big Data Spatial Files, Formats, and Software Requirements

Using Big Data Spatial and Graph with Spatial Data 2-1

2.1.1 What is Big Data Spatial and Graph on Apache Hadoop?
Oracle Big Data Spatial and Graph on Apache Hadoop is a framework that uses the
MapReduce programs and analytic capabilities in a Hadoop cluster to store, access,
and analyze the spatial data. The spatial features provide a schema and functions that
facilitate the storage, retrieval, update, and query of collections of spatial data. Big
Data Spatial and Graph on Hadoop supports storing and processing spatial images,
which could be geometric shapes, raster, or vector images and stored in one of the
several hundred supported formats.

Note:

Oracle Spatial and Graph Developer's Guide for an introduction to spatial
concepts, data, and operations

See Spatial Concepts in Oracle Spatial and Graph Developer's Guide for an
introduction to spatial concepts, data, and operations.

2.1.2 Advantages of Oracle Big Data Spatial and Graph
The advantages of using Oracle Big Data Spatial and Graph include the following:

• Unlike some of the GIS-centric spatial processing systems and engines, Oracle Big
Data Spatial and Graph is capable of processing both structured and unstructured
spatial information.

• Customers are not forced or restricted to store only one particular form of data in
their environment. They can have their data stored both as a spatial or nonspatial
business data and still can use Oracle Big Data to do their spatial processing.

• This is a framework, and therefore customers can use the available APIs to custom-
build their applications or operations.

• Oracle Big Data Spatial can process both vector and raster types of information and
images.

2.1.3 Oracle Big Data Spatial Features and Functions
The spatial data is loaded for query and analysis by the Spatial Server and the images
are stored and processed by an Image Processing Framework. You can use the Oracle
Big Data Spatial and Graph server on Hadoop for:

• Cataloguing the geospatial information, such as geographical map-based
footprints, availability of resources in a geography, and so on.

• Topological processing to calculate distance operations, such as nearest neighbor in
a map location.

• Categorization to build hierarchical maps of geographies and enrich the map by
creating demographic associations within the map elements.

The following functions are built into Oracle Big Data Spatial and Graph:

• Indexing function for faster retrieval of the spatial data.

• Map function to display map-based footprints.

About Big Data Spatial and Graph Support for Spatial Data

2-2 User's Guide and Reference

http://www.oracle.com/pls/topic/lookup?ctx=db112&id=SPATL010

• Zoom function to zoom-in and zoom-out specific geographical regions.

• Mosaic and Group function to group a set of image files for processing to create a
mosaic or subset operations.

• Cartesian and geodetic coordinate functions to represent the spatial data in one of
these coordinate systems.

• Hierarchical function that builds and relates geometric hierarchy, such as country,
state, city, postal code, and so on. This function can process the input data in the
form of documents or latitude/longitude coordinates.

2.1.4 Oracle Big Data Spatial Files, Formats, and Software Requirements
The stored spatial data or images can be in one of these supported formats:

• GeoJSON files

• Shapefiles

• Both Geodetic and Cartesian data

• Other GDAL supported formats

You must have the following software, to store and process the spatial data:

• Java runtime

• GCC Compiler - Only when the GDAL-supported formats are used

2.2 Oracle Big Data Vector and Raster Data Processing
Oracle Big Data Spatial and Graph supports the storage and processing of both vector
and raster spatial data.

• Oracle Big Data Spatial Raster Data Processing

• Oracle Big Data Spatial Vector Data Processing

2.2.1 Oracle Big Data Spatial Raster Data Processing
For processing the raster data, the GDAL loader loads the raster spatial data or images
onto a HDFS environment. The following basic operations can be performed on a
raster spatial data:

• Mosaic: Combine multiple raster images to create a single mosaic image.

• Subset: Perform subset operations on individual images.

This feature supports a MapReduce framework for raster analysis operations. The
users have the ability to custom-build their own raster operations, such as performing
an algebraic function on a raster data and so on. For example, calculate the slope at
each base of a digital elevation model or a 3D representation of a spatial surface, such
as a terrain. For details, see “Oracle Big Data Spatial Hadoop Image Processing
Framework for Raster Data Processing.”

2.2.2 Oracle Big Data Spatial Vector Data Processing
This feature supports the processing of spatial vector data:

Oracle Big Data Vector and Raster Data Processing

Using Big Data Spatial and Graph with Spatial Data 2-3

• Loaded and stored on to a Hadoop HDFS environment

• Stored either as Cartesian or geodetic data

The stored spatial vector data can be used for performing the following query
operations and more:

• Point-in-polygon

• Distance calculation

• Anyinteract

• Buffer creation

Two different data service operations are supported for the spatial vector data:

• Data enrichment

• Data categorization

In addition, there is a limited Map Visualization API support for only the HTML5
format. You can access these APIs to create custom operations. For details, see “Oracle
Big Data Spatial Vector Analysis.”

2.3 Oracle Big Data Spatial Hadoop Image Processing Framework for
Raster Data Processing

Oracle Spatial Hadoop Image Processing Framework allows the creation of new
combined images resulting from a series of processing phases in parallel with the
following features:

• HDFS Images storage, where every block size split is stored as a separate tile, ready
for future independent processing

• Subset, user-defined, and map algebra operations processed in parallel using the
MapReduce framework

• Ability to add custom processing classes to be executed in parallel in a transparent
way

• Fast processing of georeferenced images

• Support for GDAL formats, multiple bands images, DEMs (digital elevation
models), multiple pixel depths, and SRIDs

• Java API providing access to framework operations; useful for web services or
standalone Java applications

The Oracle Spatial Hadoop Image Processing Framework consists of two modules, a
Loader and Processor, each one represented by a Hadoop job running on different
stages in a cluster, as represented in the following diagram. Also, you can load and
process the images using the Image Server web application, and you can use the Java
API to expose the framework’s capabilities.

• Image Loader

• Image Processor

• Image Server

Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

2-4 User's Guide and Reference

For installation and configuration information, see:

• Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance

• Installing and Configuring the Big Data Spatial Image Processing Framework

• Installing and Configuring the Big Data Spatial Image Server

2.3.1 Image Loader
The Image Loader is a Hadoop job that loads a specific image or a group of images
into HDFS.

• While importing, the image is tiled and stored as an HDFS block.

• GDAL is used to tile the image.

• Each tile is loaded by a different mapper, so reading is parallel and faster.

• Each tile includes a certain number of overlapping bytes (user input), so that the
tiles cover area from the adjacent tiles.

• A MapReduce job uses a mapper to load the information for each tile. There are 'n'
number of mappers, depending on the number of tiles, image resolution and block
size.

• A single reduce phase per image puts together all the information loaded by the
mappers and stores the images into a special .ohif format, which contains the
resolution, bands, offsets, and image data. This way the file offset containing each
tile and the node location is known.

• Each tile contains information for every band. This is helpful when there is a need
to process only a few tiles; then, only the corresponding blocks are loaded.

The following diagram represents an Image Loader process:

Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

Using Big Data Spatial and Graph with Spatial Data 2-5

2.3.2 Image Processor
The Image Processor is a Hadoop job that filters tiles to be processed based on the user
input and performs processing in parallel to create a new image.

• Processes specific tiles of the image identified by the user. You can identify one,
zero, or multiple processing classes. After the execution of processing classes, a
mosaic operation is performed to adapt the pixels to the final output format
requested by the user.

• A mapper loads the data corresponding to one tile, conserving data locality.

• Once the data is loaded, the mapper filters the bands requested by the user.

• Filtered information is processed and sent to each mapper in the reduce phase,
where bytes are put together and a final processed image is stored into HDFS or
regular File System depending on the user request.

The following diagram represents an Image Processor job:

Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing

2-6 User's Guide and Reference

2.3.3 Image Server
The Image Server is a web application the enables you to load and process images
from different and variety of sources, especially from the Hadoop File System (HDFS).
This Oracle Image Server has several main applications:

• • Visualization of rasters in the entire globe and the ability to create a mosaic from
direct selection in the map.

• Raster Image processing to create catalogs from the source images and process into
a single unit. You can also view the image thumbnails.

• Hadoop console configuration, used to set up the cluster connection parameters
and for the jobs, initial setup.

2.4 Loading an Image to Hadoop Using the Image Loader
The first step to process images using the Oracle Spatial and Graph Hadoop Image
Processing Framework is to actually have the images in HDFS, followed by having the
images separated into smart tiles. This allows the processing job to work separately on
each tile independently. The Image Loader lets you import a single image or a
collection of them into HDFS in parallel, which decreases the load time.

The Image Loader imports images from a file system into HDFS, where each block
contains data for all the bands of the image, so that if further processing is required on
specific positions, the information can be processed on a single node.

Loading an Image to Hadoop Using the Image Loader

Using Big Data Spatial and Graph with Spatial Data 2-7

• Image Loading Job

• Input Parameters

• Output Parameters

2.4.1 Image Loading Job
The image loading job has its custom input format that splits the image into related
image splits. The splits are calculated based on an algorithm that reads square blocks
of the image covering a defined area, which is determined by

area = ((blockSize - metadata bytes) / number of bands) / bytes per pixel.

For those pieces that do not use the complete block size, the remaining bytes are
refilled with zeros.

Splits are assigned to different mappers where every assigned tile is read using GDAL
based on the ImageSplit information. As a result an ImageDataWritable instance
is created and saved in the context.

The metadata set in the ImageDataWritable instance is used by the processing
classes to set up the tiled image in order to manipulate and process it. Since the source
images are read from multiple mappers, the load is performed in parallel and faster.

After the mappers finish reading, the reducer picks up the tiles from the context and
puts them together to save the file into HDFS. A special reading process is required to
read the image back.

2.4.2 Input Parameters
The following input parameters are supplied to the Hadoop command:

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageloader.jar
 -files <SOURCE_IMGS_PATH>
 -out <HDFS_OUTPUT_FOLDER>
 -gdal <GDAL_LIB_PATH>
 -gdalData <GDAL_DATA_PATH>
 [-overlap <OVERLAPPING_PIXELS>]
 [-thumbnail <THUMBNAIL_PATH>]

Where:

SOURCE_IMGS_PATH is a path to the source image(s) or folder(s). For multiple
inputs use a comma separator. This path must be accessible via NFS to all nodes in
the cluster.

HDFS_OUTPUT_FOLDER is the HDFS output folder where the loaded images are
stored.
OVERLAPPING_PIXELS is an optional number of overlapping pixels on the
borders of each tile, if this parameter is not specified a default of two overlapping
pixels is considered.
GDAL_LIB_PATH is the path where GDAL libraries are located.
GDAL_DATA_PATH is the path where GDAL data folder is located. This path must
be accessible through NFS to all nodes in the cluster.

Loading an Image to Hadoop Using the Image Loader

2-8 User's Guide and Reference

THUMBNAIL_PATH is an optional path to store a thumbnail of the loaded image(s).
This path must be accessible through NFS to all nodes in the cluster and must have
write access permission for yarn users.

For example, the following command loads all the georeferenced images under the
images folder and adds an overlapping of 10 pixels on every border possible. The
HDFS output folder is ohiftest and thumbnail of the loaded image are stored in the
processtest folder.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageloader.jar -files /opt/shareddir/spatial/demo/imageserver/images/hawaii.tif -
out ohiftest -overlap 10 -thumbnail /opt/shareddir/spatial/processtest –gdal /opt/
oracle/oracle-spatial-graph/spatial/raster/gdal/lib –gdalData /opt/shareddir/data

By default, the Mappers and Reducers are configured to get 2 GB of JVM, but users
can override this settings or any other job configuration properties by adding an
imagejob.prop properties file in the same folder location from where the command
is being executed. This properties file may list all the configuration properties that you
want to override. For example,

mapreduce.map.memory.mb=2560
mapreduce.reduce.memory.mb=2560
mapreduce.reduce.java.opts=-Xmx2684354560
mapreduce.map.java.opts=-Xmx2684354560

2.4.3 Output Parameters
The reducer generates two output files per input image. The first one is the .ohif file
that concentrates all the tiles for the source image, each tile may be processed as a
separated instance by a processing mapper. Internally each tile is stored as a HDFS
block, blocks are located in several nodes, one node may contain one or more blocks of
a specific .ohif file. The .ohif file is stored in user specified folder with -out flag,
under the /user/<USER_EXECUTING_JOB>/OUT_FOLDER/
<PARENT_DIRECTORIES_OF_SOURCE_RASTER> folder, and the file can be identified
as original_filename.ohif.

The second output is a related metadata file that lists all the pieces of the image and
the coordinates that each one covers. The file is located in HDFS under the metadata
location, and its name is hash generated using the name of the ohif file. This file is for
Oracle internal use only, and lists important metadata of the source raster. Some
example lines from a metadata file:

srid:26904
datatype:1
resolution:27.90809458890406,-27.90809458890406
file:/user/hdfs/ohiftest/opt/shareddir/spatial/data/rasters/hawaii.tif.ohif
bands:3
mbr:532488.7648166901,4303164.583549625,582723.3350767174,4269619.053853762
0,532488.7648166901,4303164.583549625,582723.3350767174,4269619.053853762
thumbnailpath:/opt/shareddir/spatial/thumb/

If the -thumbnail flag was specified, a thumbnail of the source image is stored in the
related folder. This is a way to visualize a translation of the .ohif file. Job execution
logs can be accessed using the command yarn logs -applicationId
<applicationId>.

Loading an Image to Hadoop Using the Image Loader

Using Big Data Spatial and Graph with Spatial Data 2-9

2.5 Processing an Image Using the Oracle Spatial Hadoop Image
Processor

Once the images are loaded into HDFS, they can be processed in parallel using Oracle
Spatial Hadoop Image Processing Framework. You specify an output, and the
framework filters the tiles to fit into that output, processes them, and puts them all
together to store them into a single file. Map algebra operations are also available and,
if set, will be the first part of the processing phase. You can specify additional
processing classes to be executed before the final output is created by the framework.

The image processor loads specific blocks of data, based on the input (mosaic
description), and selects only the bands and pixels that fit into the final output. All the
specified processing classes are executed and the final output is stored into HDFS or
the file system depending on the user request.

• Image Processing Job

• Input Parameters

• Job Execution

• Processing Classes and ImageBandWritable

• Map Algebra Operations

• Output

2.5.1 Image Processing Job
The image processing job has its own custom FilterInputFormat, which
determines the tiles to be processed, based on the SRID and coordinates. Only images
with same data type (pixel depth) as mosaic input data type (pixel depth) are
considered. Only the tiles that intersect with coordinates specified by the user for the
mosaic output are included. Once the tiles are selected, a custom
ImageProcessSplit per each one of them is created.

When a mapper receives the ImageProcessSplit, it reads the information based on
what the ImageSplit specifies, performs a filter to select only the bands indicated by
the user, and executes the list of map operations and of processing classes defined in
the request, if any.

Each mapper process runs in the node, where the data is located. Once the map
algebra operations and processing classes are executed, the final process executes the
mosaic operation. The mosaic operation selects from every tile only the pixels that fit
into output and makes the necessary resolution changes to add them in the mosaic
output. The resulting bytes are set in the context included in the
ImageBandWritable type.

A single reducer picks the tiles and puts them together. If user selected HDFS output,
then the ImageLoader is called to store the result into HDFS. Otherwise, by default the
image is prepared using GDAL and is stored in the file system (NFS).

2.5.2 Input Parameters
The following input parameters are supplied to the Hadoop command:

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageprocessor.jar

Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-10 User's Guide and Reference

-catalog <IMAGE_CATALOG_PATH>
-config <MOSAIC_CONFIG_PATH>
[-usrlib <USER_PROCESS_JAR_PATH>]
[-thumbnail <THUMBNAIL_PATH>]
-gdal <GDAL_LIBRARIES_PATH>
-gdalData <GDAL_DATA_PATH>

Where:

IMAGE_CATALOG_PATH is the path to the catalog xml that lists the HDFS image(s)
to be processed.

MOSAIC_CONFIG_PATH is the path to the mosaic configuration xml, that defines
the features of the output mosaic.

USER_PROCESS_JAR_PATH is an optional user defined jar file, which contains
additional processing classes to be applied to the source images.

THUMBNAIL_PATH is an optional flag to activate the thumbnail creation of the
loaded image(s). This path must be accessible via NFS to all nodes in the cluster
and is valid only for an HDFS output.

GDAL_LIBRARIES_PATH is the path where GDAL libraries are located.

GDAL_DATA_PATH is the path where the GDAL data folder is located. This path
must be accessible via NFS to all nodes in the cluster.

For example, the following command will process all the files listed in the catalog file
input.xml file using the mosaic output definition set in testFS.xml file.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-
imageprocessor.jar -catalog /opt/shareddir/spatial/demo/imageserver/images/input.xml
-config /opt/shareddir/spatial/demo/imageserver/images/testFS.xml -thumbnail /opt/
shareddir/spatial/processtest –gdal /opt/oracle/oracle-spatial-graph/spatial/raster/
gdal/lib –gdalData /opt/shareddir/data

By default, the Mappers and Reducers are configured to get 2 GB of JVM, but users
can override this settings or any other job configuration properties by adding an
imagejob.prop properties file in the same folder location from where the command
is being executed.

2.5.2.1 Catalog XML Structure

The following is an example of input catalog XML used to list every source image
considered for mosaic operation generated by the image processing job.

-<catalog>
 -
</catalog>

A <catalog> element contains the list of <image> elements to process.

Each <image> element defines a source image or a source folder within the <raster>
element. All the images within the folder are processed.

Processing an Image Using the Oracle Spatial Hadoop Image Processor

Using Big Data Spatial and Graph with Spatial Data 2-11

The <bands> element specifies the number of bands of the image, The datatype
attribute has the raster data type and the config attribute specifies which band
should appear in the mosaic output band order. For example: 3,1,2 specifies that
mosaic output band number 1 will have band number 3 of this raster, mosaic band
number 2 will have source band 1, and mosaic band number 3 will have source band
2. This order may change from raster to raster.

2.5.2.2 Mosaic Definition XML Structure

The following is an example of a mosaic configuration XML used to define the features
of the mosaic output generated by the image processing job.

-<mosaic>
 -<output>
 <SRID>26904</SRID>
 <directory type="FS">/opt/shareddir/spatial/processOutput</directory>
 <!--directory type="HDFS">newData</directory-->
 <tempFSFolder>/opt/shareddir/spatial/tempOutput</tempFSFolder>
 <filename>littlemap</filename>
 <format>GTIFF</format>
 <width>1600</width>
 <height>986</height>
 <algorithm order="0">2</algorithm>
 <bands layers="3"/>
 <nodata>#000000</nodata>
 <pixelType>1</pixelType>
 </output>
 -<crop>
 -<transform>
 356958.985610072,280.38843650364862,0,2458324.0825054757,0,-280.38843650364862 </
transform>
 </crop>
 -<process>
 -<class>oracle.spatial.imageporcessor.hadoop.process.ImageSlope </class>
 </process>
 <operations>
 <localif operator="<" operand="3" newvalue="6"/>
 <localadd arg="5"/>
 <localsqrt/>
 <localround/>
 </operations>
</mosaic>

The <mosaic> element defines the specifications of the processing output.

The <output> element defines the features such as <SRID> considered for the output.
All the images in different SRID are converted to the mosaic SRID in order to decide if
any of its tiles fit into the mosaic or not.

The <directory> element defines where the output is located. It can be in an HDFS
or in regular FileSystem (FS), which is specified in the tag type.

The <tempFsFolder> element sets the path to store the mosaic output temporarily.

The <filename> and <format> elements specify the output filename.

The <width> and <height> elements set the mosaic output resolution.

The <algorithm> element sets the order algorithm for the images. A 1 order means,
by source last modified date, and a 2 order means, by image size. The order tag
represents ascendant or descendant modes.

Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-12 User's Guide and Reference

The <bands> element specifies the number of bands in the output mosaic. Images
with fewer bands than this number are discarded.

The <nodata> element specifies the color in the first three bands for all the pixels in
the mosaic output that have no value.

The <pixelType> element sets the pixel type of the mosaic output. Source images
that do not have the same pixel size are discarded for processing.

The <crop> element defines the coordinates included in the mosaic output in the
following order: startcoordinateX, pixelXWidth, RotationX,
startcoordinateY, RotationY, and pixelheightY.

The <process> element lists all the classes to execute before the mosaic operation. In
this example a slope calculation is applied, and it is valid only for 32–bit images of
Digital Elevation Model (DEM) files.

The <operations> element lists all the map algebra operations that will be
processed for this request.

You can specify any other user-created processing classes. When no processing class is
defined, only the mosaic operation is performed.

2.5.3 Job Execution
The first step of the job is to filter the tiles that would fit into the mosaic. As a start, the
location files that hold tile metadata are sent to theInputFormat.

By extracting the pixelType, the filter decides whether the related source image is
valid for processing or not. Based on the user definition made in the catalog xml, one
of the following happens:

• If the image is valid for processing, then the SRID is evaluated next

• If it is different from the user definition, then the MBR coordinates of every tile are
converted into the user SRID and evaluated.

This way, every tile is evaluated for intersection with mosaic definition. Only the
intersecting tiles are selected, and a split is created for each one of them.

A mapper process each split in the node where it is stored. The mapper executes the
sequence of map algebra operations and processing classes defined by the user, and
then the mosaic process is executed. A single reducer puts together the result of the
mappers and stores the image into FS or HDFS upon user request. If the user
requested is to store the output into HDFS, then the ImageLoader job is invoked to
store the image as a .ohif file.

By default, the Mappers and Reducers are configured to get 2 GB of JVM, but you can
override this settings or any other job configuration properties by adding an
imagejob.prop properties file in the same folder location from where the command
is being executed.

2.5.4 Processing Classes and ImageBandWritable
The processing classes specified in the catalog XML must follow a set of rules to be
correctly processed by the job. All the processing classes must implement the
ImageProcessorInterface.

When implementing a processing class, you may manipulate the raster using its object
representation ImageBandWritable. An example of an processing class is provided
with the framework to calculate the slope on DEMs. You can create mapping

Processing an Image Using the Oracle Spatial Hadoop Image Processor

Using Big Data Spatial and Graph with Spatial Data 2-13

operations, for example, to transforms the pixel values to another value by a function.
The ImageBandWritable instance defines the content of a tile, such as resolution,
size, and pixels. These values must be reflected in the properties that create the
definition of the tile. The integrity of the mosaic output depends on the correct
manipulation of these properties.

The ImageBandWritable instance defines the content of a tile, such as resolution,
size, and pixels. These values must be reflected in the properties that create the
definition of the tile. The integrity of the mosaic output depends on the correct
manipulation of these properties.

Table 2-1 ImageBandWritable Properties

Type - Property Description

IntWritable dstWidthSize Width size of the tile

IntWritable dstHeightSize Height size of the tile

IntWritable bands Number of bands in the tile

IntWritable dType Data type of the tile

IntWritable offX Starting X pixel, in relation to the source image

IntWritable offY Starting Y pixel, in relation to the source image

IntWritable totalWidth Width size of the source image

IntWritable totalHeight Height size of the source image

IntWritable bytesNumber Number of bytes containing the pixels of the tile and stored into
baseArray

BytesWritable[] baseArray Array containing the bytes representing the tile pixels, each cell
represents a band

IntWritable[][]
basePaletteArray

Array containing the int values representing the tile palette,
each array represents a band. Each integer represents an entry
for each color in the color table, there are four entries per color

IntWritable[]
baseColorArray

Array containing the int values representing the color
interpretation, each cell represents a band

DoubleWritable[]
noDataArray

Array containing the NODATA values for the image, each cell
contains the value for the related band

ByteWritable isProjection Specifies if the tile has projection information with
Byte.MAX_VALUE

ByteWritable isTransform Specifies if the tile has the geo transform array information with
Byte.MAX_VALUE

ByteWritable isMetadata Specifies if the tile has metadata information with
Byte.MAX_VALUE

IntWritable
projectionLength

Specifies the projection information length

BytesWritable
projectionRef

Specifies the projection information in bytes

Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-14 User's Guide and Reference

Table 2-1 (Cont.) ImageBandWritable Properties

Type - Property Description

DoubleWritable[]
geoTransform

Contains the geo transform array

IntWritable metadataSize Number of metadata values in the tile

IntWritable[]
metadataLength

Array specifying the length of each metadataValue

BytesWritable[] metadata Array of metadata of the tile

GeneralInfoWritable
mosaicInfo

The user-defined information in the mosaic xml. Do not modify
the mosaic output features. Modify the original xml file in a
new name and run the process using the new xml

Processing Classes and Methods

When modifying the pixels of the tile, first get the band information into an array
using the following method:

byte [] bandData1 =(byte []) img.getBand(0);

The bytes representing the tile pixels of band 1 are now in the bandData1 array. The
base index is zero.

The getBand(int bandId) method will get the band of the raster in the specified
bandId position. You can cast the object retrieved to the type of array of the raster; it
could be byte, short (unsigned int 16 bits, int 16 bits), int (unsigned int 32 bits, int 32
bits), float (float 32 bits), or double (float 64 bits).

With the array of pixels available, it is possible now to transform them upon a user
request.

After processing the pixels, if the same instance of ImageBandWritable must be used,
then execute the following method:

img.removeBands;

This removes the content of previous bands, and you can start adding the new bands.
To add a new band use the following method:

img.addBand(Object band);

Where band is a byte or a float array containing the pixel information. Do not forget to
update the instance size, data type, bytesNumber and any other property that might
be affected as a result of the processing operation. Setters are available for each
property.

2.5.4.1 Location of the Classes and Jar Files

All the processing classes must be contained in a single jar file if you are using the
Oracle Image Server Console. The processing classes might be placed in different jar
files if you are using the command line option.

Once new classes are visible in the classpath, they must be added to the mosaic XML,
in the <process><class> section. Every <class> element added is executed in order of
appearance before the final mosaic operation is performed.

Processing an Image Using the Oracle Spatial Hadoop Image Processor

Using Big Data Spatial and Graph with Spatial Data 2-15

2.5.5 Map Algebra Operations
You can process local map algebra operations on the input rasters, where pixels are
altered depending on the operation. The order of operations in the configuration XML
determines the order in which the operations are processed. After all the map algebra
operations are processed, the processing classes are run, and finally the mosaic
operation is performed.

The following map algebra operations can be added in the <operations> element in
the mosaic configuration XML, with the operation name serving as an element name.

localnot: Gets the negation of every pixel, inverts the bit pattern. If the result is a
negative value and the data type is unsigned, then the NODATA value is set. If the
raster does not have a specified NODATA value, then the original pixel is set.

|locallog: Returns the natural logarithm (base e) of a pixel. If the result is NaN, then
original pixel value is set; if the result is Infinite, then the NODATA value is set. If the
raster does not have a specified NODATA value, then the original pixel is set.

locallog10: Returns the base 10 logarithm of a pixel. If the result is NaN, then the
original pixel value is set; if the result is Infinite, then the NODATA value is set. If the
raster does not have a specified NODATA value, then the original pixel is set.

localadd: Adds the specified value as argument to the pixel .Example: <localadd
arg="5"/>

localdivide: Divides the value of each pixel by the specified value set as argument.
Example: <localdivide arg="5"/>

localif: Modifies the value of each pixel based on the condition and value specified
as argument. Valid operators: = , <, >, >=, < !=. Example:: <localif operator="<"
operand="3" newvalue="6"/>, which modifies all the pixels whose value is less
than 3, setting the new value to 6.

localmultiply: Multiplies the value of each pixel times the value specified as
argument. Example: <localmultiply arg="5"/>

localpow: Raises the value of each pixel to the power of the value specified as
argument. Example: <localpow arg="5"/>. If the result is infinite, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value, then
the original pixel is set.

localsqrt: Returns the correctly rounded positive square root of every pixel. If the
result is infinite or NaN, the NODATA value is set to this pixel. If the raster does not
have a specified NODATA value, then the original pixel is set.

localsubstract: Subtracts the value specified as argument to every pixel value.
Example: <localsubstract arg="5"/>

localacos: Calculates the arc cosine of a pixel. If the result is NaN, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value, then
the original pixel is set.

localasin: Calculates the arc sine of a pixel. If the result is NaN, the NODATA value
is set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set.

localatan: Calculates the arc tangent of a pixel. If the result is NaN, the NODATA
value is set to this pixel. If the raster does not have a specified NODATA value, then
the original pixel is set.

Processing an Image Using the Oracle Spatial Hadoop Image Processor

2-16 User's Guide and Reference

localcos: Calculates the cosine of a pixel. If the result is NaN, the NODATA value is
set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set.

localcosh: Calculates the hyperbolic cosine of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set.

localsin: Calculates the sine of a pixel. If the result is NaN, the NODATA value is
set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set.

localtan: Calculates the tangent of a pixel. The pixel is not modified if the cosine of
this pixel is 0. If the result is NaN, the NODATA value is set to this pixel. If the raster
does not have a specified NODATA value, then the original pixel is set.

localsinh: Calculates the arc hyperbolic sine of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set.

localtanh: Calculates the hyperbolic tangent of a pixel. If the result is NaN, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set.

localdefined: Maps an integer typed pixel to 1 if the cell value is not NODATA;
otherwise, 0.

localundefined: Maps an integer typed Raster to 0 if the cell value is not
NODATA; otherwise, 1.

localabs: Returns the absolute value of signed pixel. If the result is Infinite, the
NODATA value is set to this pixel. If the raster does not have a specified NODATA
value, then the original pixel is set.

localnegate: Multiplies by -1 the value of each pixel.

localceil: Returns the smallest value that is greater than or equal to the pixel value
and is equal to a mathematical integer. If the result is Infinite, the NODATA value is
set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set.

localfloor: Returns the smallest value that is less than or equal to the pixel value
and is equal to a mathematical integer. If the result is Infinite, the NODATA value is
set to this pixel. If the raster does not have a specified NODATA value, then the
original pixel is set.

localround: Returns the closest integer value to every pixel.

2.5.6 Output
When you specify an HDFS directory in the catalog XML, the output generated is
an .ohif file as in the case of an ImageLoader job,

When the user specifies a FS directory in the catalog xml, the output generated is an
image with the filename and type specified and is stored into regular FileSystem.

In both the scenarios, the output must comply with the specifications set in the catalog
xml. The job execution logs can be accessed using the command yarn logs -
applicationId <applicationId>.

Processing an Image Using the Oracle Spatial Hadoop Image Processor

Using Big Data Spatial and Graph with Spatial Data 2-17

2.6 Loading and Processing an Image Using the Oracle Spatial Hadoop
Raster Processing API

The framework provides a raster processing API that lets you load and process rasters
without creating XML but instead using a Java application. The application can be
executed inside the cluster or on a remote node.

The API provides access to the framework operations, and is useful for web service or
standalone Java applications.

To execute any of the jobs, a HadoopConfiguration object must be created. This
object is used to set the necessary configuration information (such as the jar file name
and the GDAL paths) to create the job, manipulate rasters, and execute the job. The
basic logic is as follows:

 //Creates Hadoop Configuration
 HadoopConfiguration hadoopConf = new HadoopConfiguration();
 //Assigns GDAL_DATA location based on specified SHAREDDIR, this data folder is
required by gdal to look for data tables that allow SRID conversions
 String gdalData = sharedDir + ProcessConstants.DIRECTORY_SEPARATOR + "data";
 hadoopConf.setGdalDataPath(gdalData);
 //Sets jar name for processor
 hadoopConf.setMapreduceJobJar("hadoop-imageprocessor.jar");
 //Creates the job
 RasterProcessorJob processor = (RasterProcessorJob)
hadoopConf.createRasterProcessorJob();

If the API is used on a remote node, you can set properties in the Hadoop
Configuration object to connect to the cluster. For example:

 //Following config settings are required for standalone execution. (REMOTE
ACCESS)
 hadoopConf.setUser("hdfs");
 hadoopConf.setHdfsPathPrefix("hdfs://den00btb.us.oracle.com:8020");
 hadoopConf.setResourceManagerScheduler("den00btb.us.oracle.com:8030");
 hadoopConf.setResourceManagerAddress("den00btb.us.oracle.com:8032");
 hadoopConf.setYarnApplicationClasspath("/etc/hadoop/conf/,/usr/lib/
hadoop/*,/usr/lib/hadoop/lib/*," +
 "/usr/lib/hadoop-hdfs/*,/usr/lib/hadoop-
hdfs/lib/*,/usr/lib/hadoop-yarn/*," +
 "/usr/lib/hadoop-yarn/lib/*,/usr/lib/hadoop-
mapreduce/*,/usr/lib/hadoop-mapreduce/lib/* ");

After the job is created, the properties for its execution must be set depending on the
job type. There are two job classes: RasterLoaderJob to load the rasters into HDFS,
and RasterProcessorJob to process them.

The following example loads a Hawaii raster into the APICALL_HDFS directory. It
creates a thumbnail in a shared folder, and specifies 10 pixels overlapping on each
edge of the tiles.

 private static void executeLoader(HadoopConfiguration hadoopConf){
 hadoopConf.setMapreduceJobJar("hadoop-imageloader.jar");
 RasterLoaderJob loader = (RasterLoaderJob)
hadoopConf.createRasterLoaderJob();
 loader.setFilesToLoad("/net/den00btb/scratch/zherena/hawaii/hawaii.tif");
 loader.setTileOverlap("10");
 loader.setOutputFolder("APICALL");
 loader.setRasterThumbnailFolder("/net/den00btb/scratch/zherena/

Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API

2-18 User's Guide and Reference

processOutput");
 try{
 loader.setGdalPath("/net/den00btb/scratch/zherena/gdal/lib");

 boolean loaderSuccess = loader.execute();
 if(loaderSuccess){
 System.out.println("Successfully executed loader job");
 }
 else{
 System.out.println("Failed to execute loader job");
 }
 }catch(Exception e){
 System.out.println("Problem when trying to execute raster loader " +
e.getMessage());
 }
 }
}

The following example processes the loaded raster.

private static void executeProcessor(HadoopConfiguration hadoopConf){
 hadoopConf.setMapreduceJobJar("hadoop-imageprocessor.jar");
 RasterProcessorJob processor = (RasterProcessorJob)
hadoopConf.createRasterProcessorJob();

 try{
 processor.setGdalPath("/net/den00btb/scratch/zherena/gdal/lib");
 MosaicConfiguration mosaic = new MosaicConfiguration();
 mosaic.setBands(3);
 mosaic.setDirectory("/net/den00btb/scratch/zherena/processOutput");
 mosaic.setFileName("APIMosaic");
 mosaic.setFileSystem(RasterProcessorJob.FS);
 mosaic.setFormat("GTIFF");
 mosaic.setHeight(3192);
 mosaic.setNoData("#FFFFFF");
 mosaic.setOrderAlgorithm(ProcessConstants.ALGORITMH_FILE_LENGTH);
 mosaic.setOrder("1");
 mosaic.setPixelType("1");
 mosaic.setPixelXWidth(67.457513);
 mosaic.setPixelYWidth(-67.457513);
 mosaic.setSrid("26904");
 mosaic.setUpperLeftX(830763.281336);
 mosaic.setUpperLeftY(2259894.481403);
 mosaic.setWidth(1300);
 processor.setMosaicConfigurationObject(mosaic.getCompactMosaic());
 RasterCatalog catalog = new RasterCatalog();
 Raster raster = new Raster();
 raster.setBands(3);
 raster.setBandsOrder("1,2,3");
 raster.setDataType(1);
 raster.setRasterLocation("/user/hdfs/APICALL/net/den00btb/scratch/zherena/
hawaii/hawaii.tif.ohif");
 catalog.addRasterToCatalog(raster);

 processor.setCatalogObject(catalog.getCompactCatalog());
 boolean processorSuccess = processor.execute();
 if(processorSuccess){
 System.out.println("Successfully executed processor job");
 }
 else{
 System.out.println("Failed to execute processor job");

Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API

Using Big Data Spatial and Graph with Spatial Data 2-19

 }
 }catch(Exception e){
 System.out.println("Problem when trying to execute raster processor " +
e.getMessage());
 }
}

In the preceding example, the thumbnail is optional if the mosaic results will be stored
in HDFS. If a processing jar file is specified (used when the additional user processing
classes are specified), the location of the jar file containing these lasses must be
specified. The other parameters are required for the mosaic to be generated
successfully.

Several examples of using the processing API are provided /opt/oracle/oracle-
spatial-graph/spatial/raster/examples/java/src. Review the Java
classes to understand their purpose. You may execute them using the scripts provided
for each example located under /opt/oracle/oracle-spatial-graph/
spatial/raster/examples/java/cmd.

After you have executed the scripts and validated the results, you can modify the Java
source files to experiment on them and compile them using the provided script /opt/
oracle/oracle-spatial-graph/spatial/raster/examples/java/
build.xml. Ensure that you have write access on the /opt/oracle/oracle-
spatial-graph/spatial/raster/jlib directory.

2.7 Oracle Big Data Spatial Vector Analysis
Oracle Big Data Spatial Vector Analysis is a Spatial Vector Analysis API, which runs as
a Hadoop job and provides MapReduce components for spatial processing of data
stored in HDFS. These components make use of the Spatial Java API to perform spatial
analysis tasks. There is a web console provided along with the API. The supported
features include:

• Spatial Indexing

• Spatial Filtering

• Using MVSuggest

• Classifying Data Hierarchically

• Generating Buffers

• Spatial Binning

• Spatial Clustering

In addition, read the following information for understanding the implementation
details:

• RecordInfoProvider

• HierarchyInfo

• Using JGeometry in MapReduce Jobs

• Tuning Performance Data of Job Running Times using Vector Analysis API

Oracle Big Data Spatial Vector Analysis

2-20 User's Guide and Reference

2.7.1 Spatial Indexing
A spatial index is in the form of a key/value pair and generated as a Hadoop MapFile.
Each MapFile entry contains a spatial index for one split of the original data. The key
and value pair contains the following information:

• Key: a split identifier in the form: path + start offset + length.

• Value: a spatial index structure containing the actual indexed records.

The following figure depicts a spatial index in relation to the user data. The records
are represented as r1, r2, and so on. The records are grouped into splits (Split 1, Split 2,
Split 3, Split n). Each split has a Key-Value pair where the key identifies the split and
the value identifies an Rtree index on the records in that split.

Related subtopics:

• Spatial Indexing Class Structure

2.7.1.1 Spatial Indexing Class Structure

Records in a spatial index are represented using the class
oracle.spatial.hadoop.vector.RecordInfo. A RecordInfo typically
contains a subset of the original record data and a way to locate the record in the file
where it is stored. The specific RecordInfo data depends on two things:

• InputFormat used to read the data

• RecordInfoProvider implementation, which provides the record's data

The fields contained within a RecordInfo:

• Id: Text field with the record Id.

• Geometry: JGeometry field with the record geometry.

• Extra fields: Additional optional fields of the record can be added as name-value
pairs. The values are always represented as text.

• Start offset: The position of the record in a file as a byte offset. This value depends
on the InputFormat used to read the original data.

• Length: The original record length in bytes.

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-21

• Path: The file path can be added optionally. This is optional because the file path
can be known using the spatial index entry key. However, to add the path to the
RecordInfo instances when a spatial index is created, the value of the
configuration property oracle.spatial.recordInfo.includePathField
key is set to true.

2.7.1.2 Configuration for Creating a Spatial Index

A spatial index is created using a combination of FileSplitInputFormat,
SpatialIndexingMapper, InputFormat, and RecordInfoProvider, where the
last two are provided by the user. The following code example shows part of the
configuration needed to run a job that creates a spatial index for the data located in the
HDFS folder /user/data.

//input

conf.setInputFormat(FileSplitInputFormat.class);
FileSplitInputFormat.setInputPaths(conf, new Path("/user/data"));
FileSplitInputFormat.setInternalInputFormatClass(conf, GeoJsonInputFormat.class);
FileSplitInputFormat.setRecordInfoProviderClass(conf,
GeoJsonRecordInfoProvider.class);

//output

conf.setOutputFormat(MapFileOutputFormat.class);
FileOutputFormat.setOutputPath(conf, new Path("/user/data_spatial_index"));

//mapper

conf.setMapperClass(SpatialIndexingMapper.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(RTreeWritable.class);

In this example,

• The FileSplitInputFormat is set as the job InputFormat.
FileSplitInputFormat is a subclass of CompositeInputFormat, an abstract
class which uses another InputFormat implementation
(internalInputFormat) to read the data. The internal InputFormat and the
RecordInfoProvider implementations are specified by the user and they are set
to GeoJsonInputFormat and GeoJsonRecordInfoProvider, respectively.

• The MapFileOutputFormat is set as the OutputFormat in order to generate a
MapFile

• The mapper is set to SpatialIndexingMappper. The mapper output key and
value types are Text (splits identifiers) and RTreeWritable (the actual spatial
indices).

• No reducer class is specified so it runs with the default reducer. The reduce phase
is needed to sort the output MapFile keys.

Alternatively, this configuration can be set easier by using the
oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing class.
SpatialIndexing is a job driver that creates a spatial index. In the following
example, a SpatialIndexing instance is created, set up, and used to add the
settings to the job configuration by calling the configure() method. Once the
configuration has been set, the job is launched.

Oracle Big Data Spatial Vector Analysis

2-22 User's Guide and Reference

SpatialIndexing<LongWritable, Text> spatialIndexing = new
SpatialIndexing<LongWritable, Text>();

//path to input data

spatialIndexing.setInput("/user/data");

//path of the spatial index to be generated

spatialIndexing.setOutput("/user/data_spatial_index");

//input format used to read the data

spatialIndexing.setInputFormatClass(TextInputFormat.class);

//record info provider used to extract records information

spatialIndexing.setRecordInfoProviderClass(TwitterLogRecordInfoProvider.class);

//add the spatial indexing configuration to the job configuration

spatialIndexing.configure(jobConf);

//run the job

JobClient.runJob(jobConf);

2.7.1.3 Input Formats for a Spatial Index

An InputFormat must meet the following requisites to be supported:

• It must be a subclass of FileInputFormat.

• The getSplits()method must return either FileSplit or CombineFileSplit
split types.

• The RecordReader’s getPos() method must return the current position to track
back a record in the spatial index to its original record in the user file. If the current
position is not returned, then the original record cannot be found using the spatial
index.

However, the spatial index still can be created and used in operations that do not
require the original record to be read. For example, additional fields can be added
as extra fields to avoid having to read the whole original record.

Note:

The spatial indexes are created for each split as returned by the getSplits()
method. When the spatial index is used for filtering (see Spatial Filtering), it is
recommended to use the same InputFormat implementation than the one
used to create the spatial index to ensure the splits indexes can be found.

The getPos() method has been removed from the Hadoop new API, however,
org.apache.hadoop.mapreduce.lib.input.TextInputFormat and
CombineTextInputFormat are supported and it is still possible to get the record
start offsets.

Other input formats from the new API are supported, but the record start offsets will
not be contained in the spatial index. Therefore, it is not possible to find the original

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-23

records. The requisites for a new API input format is same as for the old API.
However, it must be translated to the new APIs FileInputFormat, FileSplit, and
CombineFileSplit. The following example shows an input format from the new
Hadoop API that is used as internal input format:

CompositeInputFormat.setInternalInputFormatClass(conf,
org.apache.hadoop.mapreduce.lib.input.TextInputFormat);
spatialIndexing.setInputFormatClass(CompositeInputFormat.class);

2.7.1.4 Support for GeoJSON and Shapefile Formats

The Vector API comes with InputFormat and RecordInfoProvider implementations for
GeoJSON and Shapefile file formats.

The following InputFormat/RecordInfoProvider pairs can be used to read and
interpret GeoJSON and ShapeFiles, respectively:

oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat /
oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider

oracle.spatial.hadoop.vector.shapefile.mapred.ShapeFileInputFormat /
oracle.spatial.hadoop.vector.shapefile.ShapeFileRecordInfoProvider

More information about the usage and properties is available in the Javadoc.

2.7.2 Using MVSuggest
MVSuggest can be used at the time of spatial indexing to get an approximate location
for records, which do not have geometry but have some text field. This text field can
be used to determine the record location. The geometry returned by MVSuggest is
used to include the record in the spatial index.

Since it is important to know the field containing the search text for every record, the
RecordInfoProvider implementation must also implement
LocalizableRecordInfoProvider. Alternatively, the configuration parameter
oracle.spatial.recordInfo.locationField can be set with the name of the
field containing the search text.

A standalone version of MVSuggest is shipped with the Vector API and it can be used
in some jobs that accept the MVSConfig as an input parameter.

The following job drivers can work with MVSuggest and all of them have the
setMVSConfig() method which accepts an instance of MVSConfig:

• oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing: has the option of using
MVSuggest to get approximate spatial location for records which do not contain
geometry.

• oracle.spatial.hadoop.vector.mapred.job.Categorization: MVSuggest can be used
to assign a record to a specific feature in a layer, for example, the feature California
in the USA states layer.

• oracle.spatial.hadoop.vector.mapred.job.SuggestService: A simple job that
generates a file containing a search text and its match per input record.

The MVSuggest configuration is passed to a job using the MVSConfig or the
LocalMVSConfig classes. The basic MVSuggest properties are:

• serviceLocation: It is the minimum property required in order to use
MVSuggest. It contains the path or URL where the MVSuggest directory is located
or in the case of a URL, where the MVSuggest service is deployed.

Oracle Big Data Spatial Vector Analysis

2-24 User's Guide and Reference

• serviceInterfaceType: the type of MVSuggest implementation used. It can be
LOCAL(default) for a standalone version and WEB for the web service version.

• matchLayers: an array of layer names used to perform the searches.

When using the standalone version of MVSuggest, you must specify an MVSuggest
directory or repository as the serviceLocation. An MVSuggest directory must
have the following structure:

mvsuggest_config.json
repository folder
 one or more layer template files in .json format
 optionally, a _config_ directory
 optionally, a _geonames_ directory

The examples folder comes with many layer template files and a _config_
directory with the configuration for each template.

It is possible to set the repository folder (the one that contains the templates) as the
mvsLocation instead of the whole MVSuggest directory. In order to do that, the class
LocalMVSConfig can be used instead of MVSConfig and the
repositoryLocation property must be set to true as shown in the following
example:

LocalMVSConfig lmvsConf = new LocalMVSConfig();
lmvsConf.setServiceLocation(“file:///home/user/mvs_dir/repository/”);
lmvsConf.setRepositoryLocation(true);
lmvsConf.setPersistentServiceLocation(“/user/hdfs/hdfs_mvs_dir”);
spatialIndexingJob.setMvsConfig(lmvsConf);

The preceding example sets a repository folder as the MVS service location.
setRepositoryLocation is set to true to indicate that the service location is a
repository instead of the whole MVSuggest directory. When the job runs, a whole
MVSuggest directory will be created using the given repository location; the
repository will be indexed and will be placed in a temporary folder while the job
finishes. The previously indexed MVSuggest directory can be persisted so it can be
used later. The preceding example saves the generated MVSuggest directory in the
HDFS path /user/hdfs/hdfs_mvs_dir. Use the MVSDirectory if the MVSuggest
directory already exists.

2.7.3 Spatial Filtering
Once the spatial index has been generated, it can be used to spatially filter the data.
The filtering is performed before the data reaches the mapper and while it is being
read. The following sample code example demonstrates how the
SpatialFilterInputFormat is used to spatially filter the data.

//set input path and format

FileInputFormat.setInputPaths(conf, new Path("/user/data/"));
conf.setInputFormat(SpatialFilterInputFormat.class);

//set internal input format

SpatialFilterInputFormat.setInternalInputFormatClass(conf, TextInputFormat.class);
if(spatialIndexPath != null)
{

 //set the path to the spatial index and put it in the distributed cache

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-25

 boolean useDistributedCache = true;
 SpatialFilterInputFormat.setSpatialIndexPath(conf, spatialIndexPath,
useDistributedCache);
}
else
{
 //as no spatial index is used a RecordInfoProvider is needed

 SpatialFilterInputFormat.setRecordInfoProviderClass(conf,
TwitterLogRecordInfoProvider.class);
}

//set spatial operation used to filter the records

SpatialOperationConfig spatialOpConf = new SpatialOperationConfig();
spatialOpConf.setOperation(SpatialOperation.IsInside);
 spatialOpConf.setJsonQueryWindow("{\"type\":\"Polygon\", \"coordinates\":
[[-106.64595, 25.83997, -106.64595, 36.50061, -93.51001, 36.50061, -93.51001,
25.83997 , -106.64595, 25.83997]]}");
spatialOpConf.setSrid(8307);
spatialOpConf.setTolerance(0.5);
spatialOpConf.setGeodetic(true);

SpatialFilterInputFormat has to be set as the job's InputFormat. The
InputFormat that actually reads the data must be set as the internal InputFormat.
In this example, the internal InputFormat is TextInputFormat.

If a spatial index is specified, it is used for filtering. Otherwise, a
RecordInfoProvider must be specified in order to get the records geometries, in
which case the filtering is performed record by record.

As a final step, the spatial operation and query window to perform the spatial filter
are set. It is recommended to use the same internal InputFormat implementation
used when the spatial index was created or, at least, an implementation that uses the
same criteria to generate the splits. For details see “Input Formats for a Spatial Index.”

If a simple spatial filtering needs to be performed (that is, only retrieving records that
interact with a query window), the built-in job driver
oracle.spatial.hadoop.vector.mapred.job.SpatialFilter can be used
instead. This job driver accepts ndexed or non-indexed input and a
SpatialOperationConfig to perform the filtering.

2.7.3.1 Filtering Records

The following steps are executed when records are filtered using the
SpatialFilterInputFormat and a spatial index.

1. SpatialFilterInputFormat getRecordReader() method is called when
the mapper requests a RecordReader for the current split.

2. The spatial index for the current split is retrieved.

3. A spatial query is performed over the records contained in it using the spatial
index.

As a result, the ranges in the split that contains records meeting the spatial filter
are known. For example, if a split goes from the file position 1000 to 2000, upon
executing the spatial filter it can be determined that records that fulfill the spatial
condition are in the ranges 1100-1200, 1500-1600 and 1800-1950. So the result of
performing the spatial filtering at this stage is a subset of the original filter
containing smaller splits.

Oracle Big Data Spatial Vector Analysis

2-26 User's Guide and Reference

4. An InternalInputFormat RecordReader is requested for every small split from
the resulting split subset.

5. A RecordReader is returned to the caller mapper. The returned RecordReader is
actually a wrapper RecordReader with one or more RecordReaders returned by
the internal InputFormat.

6. Every time the mapper calls the RecordReader, the call to next method to read a
record is delegated to the internal RecordReader.

These steps are shown in the following spatial filter interaction diagram.

2.7.4 Classifying Data Hierarchically
The Vector Analysis API provides a way to classify the data into hierarchical entities.
For example, in a given set of catalogs with a defined level of administrative
boundaries such as continents, countries and states, it is possible to join a record of the
user data to a record of each level of the hierarchy data set.The following example
generates a summary count for each hierarchy level, containing the number of user
records per continent, country and state or province:

Categorization catJob = new Categorization();
//set a spatial index as the input

catJob.setIndexName("indexExample");

//set the job's output

catJob.setOutput("hierarchy_count");

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-27

//set HierarchyInfo implementation which describes the world administrative
boundaries hierarchy

catJob.setHierarchyInfoClass(WorldDynaAdminHierarchyInfo.class);

//specify the paths of the hierarchy data

Path[] hierarchyDataPaths = {
 new Path("file:///home/user/catalogs/world_continents.json"),
 new Path("file:///home/user/catalogs/world_countries.json"),
 new Path("file:///home/user/catalogs/world_states_provinces.json")};
catJob.setHierarchyDataPaths(hierarchyDataPaths);

//set the path where the index for the previous hierarchy data will be generated

catJob.setHierarchyIndexPath(new Path("/user/hierarchy_data_index/"));

//setup the spatial operation which will be used to join records from the two
datasets (spatial index and hierarchy data).
SpatialOperationConfig spatialOpConf = new SpatialOperationConfig();
spatialOpConf.setOperation(SpatialOperation.IsInside);
spatialOpConf.setSrid(8307);
spatialOpConf.setTolerance(0.5);
spatialOpConf.setGeodetic(true);
catJob.setSpatialOperationConfig(spatialOpConf);

//add the previous setup to the job configuration

catJob.configure(conf);

//run the job
RunningJob rj = JobClient.runJob(conf);

The preceding example uses the Categorization job driver. The configuration can
be divided into the following categories:

• Input data: A previously generated spatial index (received as the job input).

• Output data: A folder that contains the summary counts for each hierarchy level.

• Hierarchy data configuration: This contains the following:

– HierarchyInfo class: This is an implementation of HierarchyInfo class in
charge of describing the current hierarchy data. It provides the number of
hierarchy levels, level names, and the data contained at each level.

– Hierarchy data paths: This is the path to each one of the hierarchy catalogs.
These catalogs are read by the HierarchyInfo class.

– Hierarchy index path: This is the path where the hierarchy data index is stored.
Hierarchy data needs to be preprocessed to know the parent-child relationships
between hierarchy levels. This information is processed once and saved at the
hierarchy index, so it can be used later by the current job or even by any other
jobs.

• Spatial operation configuration: This is the spatial operation to be performed
between records of the user data and the hierarchy data in order to join both
datasets. The parameters to set here are the Spatial Operation type (IsInside), SRID
(8307), Tolerance (0.5 meters), and whether the geometries are Geodetic (true).

Oracle Big Data Spatial Vector Analysis

2-28 User's Guide and Reference

Internally, the Categorization.configure() method sets the mapper and
reducer to be
SpatialHierarchicalCountMapper and SpatialHierarchicalCountReduce
r, respectively. SpatialHierarchicalCountMapper's output key is a hierarchy
entry identifier in the form hierarchy_level + hierarchy_entry_id. The
mapper output value is a single count for each output key. The reducer sums up all
the counts for each key.

Note:

The entire hierarchy data may be read into memory and hence the total size of
all the catalogs is expected to be significantly less than the user data. The
hierarchy data size should not be larger than a couple of gigabytes.

If you want another type of output instead of counts, for example, a list of user records
according to the hierarchy entry. In this case, the
SpatialHierarchicalJoinMapper can be used. The
SpatialHierarchicalJoinMapper output value is a RecordInfo instance,
which can be gathered in a user-defined reducer to produce a different output. The
following user-defined reducer generates a MapFile for each hierarchy level using the
MultipleOutputs class. Each MapFile has the hierarchy entry ids as keys and
ArrayWritable instances containing the matching records for each hierarchy entry
as values. The following is an user-defined reducer that returns a list of records by
hierarchy entry:

public class HierarchyJoinReducer extends MapReduceBase implements Reducer<Text,
RecordInfo, Text, ArrayWritable> {

 private MultipleOutputs mos = null;
 private Text outKey = new Text();
 private ArrayWritable outValue = new ArrayWritable(RecordInfo.class);

 @Override
 public void configure(JobConf conf)
 {
 super.configure(conf);

 //use MultipleOutputs to generate different outputs for each hierarchy level

 mos = new MultipleOutputs(conf);
 }
 @Override
 public void reduce(Text key, Iterator<RecordInfo> values,
 OutputCollector<Text, RecordInfoArrayWritable> output,
Reporter reporter)
 throws IOException
 {

 //Get the hierarchy level name and the hierarchy entry id from the key

 String[] keyComponents =
HierarchyHelper.getMapRedOutputKeyComponents(key.toString());
 String hierarchyLevelName = keyComponents[0];
 String entryId = keyComponents[1];
 List<Writable> records = new LinkedList<Writable>();

 //load the values to memory to fill output ArrayWritable

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-29

 while(values.hasNext())
 {
 RecordInfo recordInfo = new RecordInfo(values.next());
 records.add(recordInfo);
 }
 if(!records.isEmpty())
 {

 //set the hierarchy entry id as key

 outKey.set(entryId);

 //list of records matching the hierarchy entry id

 outValue.set(records.toArray(new Writable[]{}));

 //get the named output for the given hierarchy level

 hierarchyLevelName = FileUtils.toValidMONamedOutput(hierarchyLevelName);
 OutputCollector<Text, ArrayWritable> mout =
mos.getCollector(hierarchyLevelName, reporter);

 //Emit key and value

 mout.collect(outKey, outValue);
 }
}

 @Override
 public void close() throws IOException
 {
 mos.close();
 }
}

The same reducer can be used in a job with the following configuration to generate list
of records according to the hierarchy levels:

JobConf conf = new JobConf(getConf());

//input path

FileInputFormat.setInputPaths(conf, new Path("/user/data_spatial_index/"));

//output path

FileOutputFormat.setOutputPath(conf, new Path("/user/records_per_hier_level/"));

//input format used to read the spatial index

conf.setInputFormat(SequenceFileInputFormat.class);

//output format: the real output format will be configured for each multiple output
later

conf.setOutputFormat(NullOutputFormat.class);

//mapper

conf.setMapperClass(SpatialHierarchicalJoinMapper.class);

Oracle Big Data Spatial Vector Analysis

2-30 User's Guide and Reference

conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(RecordInfo.class);

//reducer

conf.setReducerClass(HierarchyJoinReducer.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(ArrayWritable.class);

//

//hierarchy data setup

//set HierarchyInfo class implementation

conf.setClass(ConfigParams.HIERARCHY_INFO_CLASS, WorldAdminHierarchyInfo.class,
HierarchyInfo.class);

//paths to hierarchical catalogs

Path[] hierarchyDataPaths = {
new Path("file:///home/user/catalogs/world_continents.json"),
new Path("file:///home/user/catalogs/world_countries.json"),
new Path("file:///home/user/catalogs/world_states_provinces.json")};

//path to hierarchy index

Path hierarchyDataIndexPath = new Path("/user/hierarchy_data_index/");

//instantiate the HierarchyInfo class to index the data if needed.

HierarchyInfo hierarchyInfo = new WorldAdminHierarchyInfo();
hierarchyInfo.initialize(conf);

//Create the hierarchy index if needed. If it already exists, it will only load the
hierarchy index to the distributed cache

HierarchyHelper.setupHierarchyDataIndex(hierarchyDataPaths, hierarchyDataIndexPath,
hierarchyInfo, conf);

///

//setup the multiple named outputs:

int levels = hierarchyInfo.getNumberOfLevels();
for(int i=1; i<=levels; i++)
{
 String levelName = hierarchyInfo.getLevelName(i);

 //the hierarchy level name is used as the named output

 String namedOutput = FileUtils.toValidMONamedOutput(levelName);
 MultipleOutputs.addNamedOutput(conf, namedOutput, MapFileOutputFormat.class,
Text.class, ArrayWritable.class);
}

//finally, setup the spatial operation

SpatialOperationConfig spatialOpConf = new SpatialOperationConfig();
spatialOpConf.setOperation(SpatialOperation.IsInside);
spatialOpConf.setSrid(8307);

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-31

spatialOpConf.setTolerance(0.5);
spatialOpConf.setGeodetic(true);
spatialOpConf.store(conf);

//run job

JobClient.runJob(conf);

Supposing the output value should be an array of record ids instead of an array of
RecordInfo instances, it would be enough to perform a couple of changes in the
previously defined reducer.

The line where outValue is declared, in the previous example, changes to:

private ArrayWritable outValue = new ArrayWritable(Text.class);

The loop where the input values are retrieved, in the previous example, is changed.
Therefore, the record ids are got instead of the whole records:

while(values.hasNext())
{
 records.add(new Text(values.next().getId()));
}

While only the record id is needed the mapper emits the whole RecordInfo instance.
Therefore, a better approach is to change the mappers output value. The mappers
output value can be changed by extending AbstractSpatialJoinMapper. In the
following example, the mapper emits only the record ids instead of the whole
RecorInfo instance every time a record matches some of the hierarchy entries:

public class IdSpatialHierarchicalMapper extends AbstractSpatialHierarchicalMapper<
Text >
{
 Text outValue = new Text();

 @Override
 protected Text getOutValue(RecordInfo matchingRecordInfo)
 {

 //the out value is the record's id

 outValue.set(matchingRecordInfo.getId());
 return outValue;
 }
}

2.7.4.1 Changing the Hierarchy Level Range

By default, all the hierarchy levels defined in the HierarchyInfo implementation
are loaded when performing the hierarchy search. The range of hierarchy levels
loaded is from level 1 (parent level) to the level returned by
HierarchyInfo.getNumberOfLevels() method. The following example shows
how to setup a job to only load the levels 2 and 3.

conf.setInt(ConfigParams.HIERARCHY_LOAD_MIN_LEVEL, 2);
conf.setInt(ConfigParams.HIERARCHY_LOAD_MAX_LEVEL, 3);

Oracle Big Data Spatial Vector Analysis

2-32 User's Guide and Reference

Note:

These parameters are useful when only a subset of the hierarchy levels is
required and when you do not want to modify the HierarchyInfo
implementation.

2.7.4.2 Controlling the Search Hierarchy

The search is always performed only at the bottom hierarchy level (the higher level
number). If a user record matches some hierarchy entry at this level, then the match is
propagated to the parent entry in upper levels. For example, if a user record matches
Los Angeles, then it also matches California, USA, and North America. If there are no
matches for a user record at the bottom level, then the search does not continue into
the upper levels.

This behavior can be modified by setting the configuration parameter
ConfigParams.HIERARCHY_SEARCH_MULTIPLE_LEVELS to true. Therefore, if a
search at the bottom hierarchy level resulted in some unmatched user records, then
search continues into the upper levels until the top hierarchy level is reached or there
are no more user records to join. This behavior can be used when the geometries of
parent levels do not perfectly enclose the geometries of their child entries

2.7.4.3 Using MVSuggest to Classify the Data

MVSuggest can be used instead of the spatial index to classify data. For this case, an
implementation of LocalizableRecordInfoProvider must be known and sent to
MVSuggest to perform the search. See the information about
LocalizableRecordInfoProvider.

In the following example, the program option is changed from spatial to MVS. The
input is the path to the user data instead of the spatial index. The InputFormat used
to read the user record and an implementation of
LocalizableRecordInfoProvider are specified. The MVSuggest service
configuration is set. Notice that there is no spatial operation configuration needed in
this case.

Categorization<LongWritable, Text> hierCount = new Categorization<LongWritable,
Text>();

// the input path is the user's data

hierCount.setInput("/user/data/");

// set the job's output

hierCount.setOutput("/user/mvs_hierarchy_count");

// set HierarchyInfo implementation which describes the world
// administrative boundaries hierarchy

hierCount.setHierarchyInfoClass(WorldDynaAdminHierarchyInfo.class);

// specify the paths of the hierarchy data

Path[] hierarchyDataPaths = { new Path("file:///home/user/catalogs/
world_continents.json"),
 new Path("file:///home/user/catalogs/world_countries.json"),
 new Path("file:///home/user/catalogs/world_states_provinces.json") };

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-33

hierCount.setHierarchyDataPaths(hierarchyDataPaths);

// set the path where the index for the previous hierarchy data will be
// generated

hierCount.setHierarchyIndexPath(new Path("/user/hierarchy_data_index/"));

// No spatial operation configuration is needed, Instead, specify the
// InputFormat used to read the user's data and the
// LocalizableRecordInfoProvider class.

hierCount.setInputFormatClass(TextInputFormat.class);
hierCount.setRecordInfoProviderClass(MyLocalizableRecordInfoProvider.class);

// finally, set the MVSuggest configuration

LocalMVSConfig lmvsConf = new LocalMVSConfig();
lmvsConf.setServiceLocation("file:///home/user/mvs_dir/oraclemaps_pub");
lmvsConf.setRepositoryLocation(true);
hierCount.setMvsConfig(lmvsConf);

// add the previous setup to the job configuration
hierCount.configure(conf);

// run the job

JobClient.runJob(conf);

Note:

When using MVSuggest, the hierarchy data files must be the same as the
layer template files used by MVSuggest. The hierarchy level names returned
by the HierarchyInfo.getLevelNames() method are used as the
matching layers by MVSuggest.

2.7.5 Generating Buffers
The API provides a mapper to generate a buffer around each record's geometry. The
following code sample shows how to run a job to generate a buffer for each record
geometry by using the BufferMapper class.

//configure input
conf.setInputFormat(FileSplitInputFormat.class);
FileSplitInputFormat.setInputPaths(conf, "/user/waterlines/");
FileSplitInputFormat.setRecordInfoProviderClass(conf,
GeoJsonRecordInfoProvider.class);

//configure output
conf.setOutputFormat(SequenceFileOutputFormat.class);
SequenceFileOutputFormat.setOutputPath(conf, new Path("/user/data_buffer/"));

//set the BufferMapper as the job mapper
conf.setMapperClass(BufferMapper.class);
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(RecordInfo.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(RecordInfo.class);

//set the width of the buffers to be generated

Oracle Big Data Spatial Vector Analysis

2-34 User's Guide and Reference

conf.setDouble(ConfigParams.BUFFER_WIDTH, 0.2);

//run the job
JobClient.runJob(conf);

BufferMapper generates a buffer for each input record containing a geometry. The
output key and values are the record id and a RecordInfo instance containing the
generated buffer. The resulting file is a Hadoop MapFile containing the mapper
output key and values. If necessary, the output format can be modified by
implementing a reducer that takes the mapper’s output keys and values, and outputs
keys and values of a different type.

BufferMapper accepts the following parameters:

Parameter ConfigParam
constant

Type Description

oracle.spatial.buffer.
width

BUFFER_WIDTH double The buffer width

oracle.spatial.buffer.s
ma

BUFFER_SMA double The semi major axis
for the datum used in
the coordinate
system of the input

oracle.spatial.buffer.i
Flat

BUFFER_IFLAT double The flattening value

oracle.spatial.buffer.a
rcT

BUFFER_ARCT double The arc tolerance
used for geodetic
densification

2.7.6 Spatial Binning
The Vector API provides the class
oracle.spatial.hadoop.vector.mapred.job.Binning to perform spatial
binning over a spatial data set. The Binning class is a MapReduce job driver that
takes an input data set (which can be spatially indexed or not), assigns each record to a
bin, and generates a file containing all the bins (which contain one or more records
and optionally aggregated values).

A binning job can be configured as follows:

1. Specify the data set to be binned and the way it will be read and interpreted
(InputFormat and RecordInfoProvider), or, specify the name of an existing
spatial index.

2. Set the output path.

3. Set the grid MBR, that is, the rectangular area to be binned.

4. Set the shape of the bins: RECTANGLE or HEXAGON.

5. Specify the bin (cell) size. For rectangles, specify the width and height. For
hexagon-shaped cells, specify the hexagon width. Each hexagon is always drawn
with only one of its vertices as the base.

6. Optionally, pass a list of numeric field names to be aggregated per bin.

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-35

The resulting output is a text file where each record is a bin (cell) in JSON format and
contains the following information:

• id: the bin id

• geom: the bin geometry; always a polygon that is a rectangle or a hexagon

• count: the number of points contained in the bin

• aggregated fields: zero or more aggregated fields

The following example configures and runs a binning job:

//create job driver
Binning<LongWritable, Text> binJob = new Binning<LongWritable, Text>();
//setup input
binJob.setInput("/user/hdfs/input/part*");
binJob.setInputFormatClass(GeoJsonInputFormat.class);
binJob.setRecordInfoProviderClass(GeoJsonRecordInfoProvider.class);
//set binning output
binJob.setOutput("/user/hdfs/output/binning");
//create a binning configuration to produce rectangular cells
BinningConfig binConf = new BinningConfig();
binConf.setShape(BinShape.RECTANGLE);
//set the bin size
binConf.setCellHeight(0.2);
binConf.setCellWidth(0.2);
//specify the area to be binned
binConf.setGridMbr(new double[]{-50,10,50,40});
binJob.setBinConf(binConf);
//save configuration
binJob.configure(conf);
//run job
JobClient.runJob(conf);

2.7.7 Spatial Clustering
The job driver class oracle.spatial.hadoop.mapred.KMeansClustering can
be used to find spatial clusters in a data set. This class uses a distributed version of the
K-means algorithm.

Required parameters:

• Path to the input data set, the InputFormat class used to read the input data set
and the RecordInfoProvider used to extract the spatial information from
records.

• Path where the results will be stored.

• Number of clusters to be found.

Optional parameters:

• Maximum number of iterations before the algorithm finishes.

• Criterion function used to determine when the clusters converge. It is given as an
implementation of
oracle.spatial.hadoop.vector.cluster.kmeans.CriterionFunction.
The Vector API contains the following criterion function implementations:
SquaredErrorCriterionFunction and
EuclideanDistanceCriterionFunction.

Oracle Big Data Spatial Vector Analysis

2-36 User's Guide and Reference

• An implementation of
oracle.spatial.hadoop.vector.cluster.kmeans.ClusterShapeGener
ator, which is used to generate a geometry for each cluster. The default
implementation is ConvexHullClusterShapeGenerator and generates a
convex hull for each cluster. If no cluster geometry is needed, the
DummyClusterShapeGenerator class can be used.

• The initial k cluster points as a sequence of x,y ordinates. For example: x1,y1,x2,y2,
…xk,yk

The result is a file named clusters.json, which contains an array of clusters called
features. Each cluster contains the following information:

• id: Cluster id

• memberCount: Number of elements in the cluster

• geom: Cluster geometry

The following example runs the KMeansClustering algorithm to find 5 clusters. By
default, the SquredErrorCriterionFunction and
ConvexHullClusterShapeGenerator are used , so you do not need yo set these
classes explicitly. Also note that runIterations() is called to run the algorithm;
internally, it launches one MapReduce per iteration. In this example, the number 20 is
passed to runIterations() as the maximum number of iterations allowed.

//create the cluster job driver
KMeansClustering<LongWritable, Text> clusterJob = new KMeansClustering<LongWritable,
Text>();
//set input properties:
//input dataset path
clusterJob.setInput("/user/hdfs/input/part*");
//InputFormat class
clusterJob.setInputFormatClass(GeoJsonInputFormat.class);
//RecordInfoProvider implementation
clusterJob.setRecordInfoProviderClass(GeoJsonRecordInfoProvider.class);
//specify where the results will be saved
clusterJob.setOutput("/user/hdfs/output/clusters");
//5 cluster will be found
clusterJob.setK(5);
//run the algorithm
success = clusterJob.runIterations(20, conf);

2.7.8 RecordInfoProvider
A record read by a MapReduce job from HDFS is represented in memory as a key-
value pair using a Java type (typically) Writable subclass, such as LongWritable, Text,
ArrayWritable or some user-defined type. For example, records read using
TextInputFormat are represented in memory as LongWritable, Text key-value pairs.

RecordInfoProvider is the component that interprets these memory record
representations and returns the data needed by the Vector Analysis API. Thus, the API
is not tied to any specific format and memory representations.

The RecordInfoProvider interface has the following methods:

• void setCurrentRecord(K key, V value)

• String getId()

• JGeometry getGeometry()

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-37

• boolean getExtraFields(Map<String, String> extraFields)

There is always a RecordInfoProvider instance per InputFormat. The method
setCurrentRecord() is called passing the current key-value pair retrieved from the
RecordReader. The RecordInfoProvider is then used to get the current record id,
geometry, and extra fields. None of these fields are required fields. Only those records
with a geometry participates in the spatial operations. The Id is useful for
differentiating records in operations such as categorization. The extra fields can be
used to store any record information that can be represented as text and which is
desired to be quickly accessed without reading the original record, or for operations
where MVSuggest is used.

Typically, the information returned by RecordInfoProvider is used to populate
RecordInfo instances. A RecordInfo can be thought as a light version of a record and
contains the information returned by the RecordInfoProvider plus information to
locate the original record in a file.

2.7.8.1 Sample RecordInfoProvider Implementation

This sample implementation, called JsonRecordInfoProvider, takes text records
in JSON format, which are read using TextInputFormat. A sample record is shown
here:

{ "_id":"ABCD1234", "location":" 119.31669, -31.21615", "locationText":"Boston, Ma",
"date":"03-18-2015", "time":"18:05", "device-type":"cellphone", "device-
name":"iPhone"}

When a JsonRecordInfoProvider is instantiated, a JSON ObjectMapper is created. The
ObjectMapper is used to parse records values later when setCurrentRecord() is
called. The record key is ignored. The record id, geometry, and one extra field are
retrieved from the _id, location and locationText JSON properties. The geometry is
represented as latitude-longitude pair and is used to create a point geometry using
JGeometry.createPoint() method. The extra field (locationText) is added to the
extraFields map, which serves as an out parameter and true is returned indicating that
an extra field was added.

public class JsonRecordInfoProvider implements RecordInfoProvider<LongWritable,
Text> {
private Text value = null;
private ObjectMapper jsonMapper = null;
private JsonNode recordNode = null;

public JsonRecordInfoProvider(){

//json mapper used to parse all the records

jsonMapper = new ObjectMapper();

}

@Override
public void setCurrentRecord(LongWritable key, Text value) throws Exception {
 try{

 //parse the current value

 recordNode = jsonMapper.readTree(value.toString());
 }catch(Exception ex){
 recordNode = null;
 throw ex;

Oracle Big Data Spatial Vector Analysis

2-38 User's Guide and Reference

 }
}

@Override
public String getId() {
 String id = null;
 if(recordNode != null){
 id = recordNode.get("_id").getTextValue();
 }
 return id;
}
@Override
public JGeometry getGeometry() {
 JGeometry geom = null;
 if(recordNode!= null){
 //location is represented as a lat,lon pair
 String location = recordNode.get("location").getTextValue();
 String[] locTokens = location.split(",");
 double lat = Double.parseDouble(locTokens[0]);
 double lon = Double.parseDouble(locTokens[1]);
 geom = JGeometry.createPoint(new double[]{lon, lat}, 2, 8307);
 }
 return geom;
}

@Override
public boolean getExtraFields(Map<String, String> extraFields) {
 boolean extraFieldsExist = false;
 if(recordNode != null) {
 extraFields.put("locationText",
recordNode.get("locationText").getTextValue());
 extraFieldsExist = true;
 }
 return extraFieldsExist;
}
}

2.7.8.2 LocalizableRecordInfoProvider

This interface extends RecordInfoProvider and is used to know the extra fields
that can be used as the search text, when MVSuggest is used.

The only method added by this interface is getLocationServiceField(), which
returns the name of the extra field that will be sent to MVSuggest.

In addition, the following is an implementation based on “Sample RecordInfoProvider
Implementation.” The name returned in this example is locationText, which is the
name of the extra field included in the parent class.

public class LocalizableJsonRecordInfoProvider extends JsonRecordInfoProvider
implements LocalizableRecordInfoProvider<LongWritable, Text> {

@Override
public String getLocationServiceField() {
 return "locationText";
}
}

An alternative to LocalizableRecordInfoProvider is to set the configuration
property oracle.spatial.recordInfo.locationField with the name of the
search field, which value should be sent to MVSuggest. Example:

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-39

configuration.set(LocatizableRecordInfoProvider.CONF_RECORD_INFO
_LOCATION_FIELD, “locationField”)

2.7.9 HierarchyInfo
The HierarchyInfo interface is used to describe a hierarchical dataset. This
implementation of HierarchyInfo is expected to provide the number, names, and the
entries of the hierarchy levels of the hierarchy it describes.

The root hierarchy level is always the hierarchy level 1. The entries in this level do not
have parent entries and this level is referred as the top hierarchy level. Children
hierarchy levels will have higher level values. For example: the levels for the hierarchy
conformed by continents, countries, and states are 1, 2 and 3 respectively. Entries in
the continent layer do not have a parent, but have children entries in the countries
layer. Entries at the bottom level, the states layer, do not have children.

A HierarchyInfo implementation is provided out of the box with the Vector Analysis
API. The DynaAdminHierarchyInfo implementation can be used to read and
describe the known hierarchy layers in GeoJSON format. A DynaAdminHierarchyInfo
can be instantiated and configured or can be subclassed. The hierarchy layers to be
contained are specified by calling the addLevel() method, which takes the following
parameters:

• The hierarchy level number

• The hierarchy level name, which must match the file name (without extension) of
the GeoJSON file that contains the data. For example, the hierarchy level name for
the file world_continents.json must be world_continents, for
world_countries.json it is world_countries, and so on.

• Children join field: This is a JSON property that is used to join entries of the current
level with child entries in the lower level. If a null is passed, then the entry id is
used.

• Parent join field: This is a JSON property used to join entries of the current level
with parent entries in the upper level. This value is not used for the top most level
without an upper level to join. If the value is set null for any other level greater
than 1, an IsInside spatial operation is performed to join parent and child
entries. In this scenario, it is supposed that an upper level geometry entry can
contain lower level entries.

For example, let us assume a hierarchy containing the following levels from the
specified layers: 1- world_continents, 2 - world_countries and 3 -
world_states_provinces. A sample entry from each layer would look like the
following:

world_continents:
 {"type":"Feature","_id":"NA","geometry": {"type":"MultiPolygon", "coordinates":
[x,y,x,y,x,y] }"properties":{"NAME":"NORTH AMERICA", "CONTINENT_LONG_LABEL":"North
America"},"label_box":[-118.07998,32.21006,-86.58515,44.71352]}

world_countries: {"type":"Feature","_id":"iso_CAN","geometry":
{"type":"MultiPolygon","coordinates":[x,y,x,y,x,y]},"properties":
{"NAME":"CANADA","CONTINENT":"NA","ALT_REGION":"NA","COUNTRY
CODE":"CAN"},"label_box":[-124.28092,49.90408,-94.44878,66.89287]}

world_states_provinces:
{"type":"Feature","_id":"6093943","geometry": {"type":"Polygon", "coordinates":

Oracle Big Data Spatial Vector Analysis

2-40 User's Guide and Reference

[x,y,x,y,x,y]},"properties":{"COUNTRY":"Canada", "ISO":"CAN",
"STATE_NAME":"Ontario"},"label_box":[-91.84903,49.39557,-82.32462,54.98426]}

A DynaAdminHierarchyInfo can be configured to create a hierarchy with the above
layers in the following way:

DynaAdminHierarchyInfo dahi = new DynaAdminHierarchyInfo();

dahi.addLevel(1, "world_continents", null /*_id is used by default to join with
child entries*/, null /*not needed as there are not upper hierarchy levels*/);

dahi.addLevel(2, "world_countries", "properties.COUNTRY CODE"/*field used to join
with child entries*/, "properties.CONTINENT" /*the value "NA" will be used to find
Canada's parent which is North America and which _id field value is also "NA" */);

dahi.addLevel(3, "world_states_provinces", null /*not needed as not child entries
are expected*/, "properties.ISO"/*field used to join with parent entries. For
Ontario, it is the same value than the field properties.COUNTRY CODE specified for
Canada*/);

//save the previous configuration to the job configuration

dahi.initialize(conf);

A similar configuration can be used to create hierarchies from different layers, such as
countries, states and counties, or any other layers with a similar JSON format.

Alternatively, to avoid configuring a hierarchy every time a job is executed, the
hierarchy configuration can be enclosed in a DynaAdminHierarchyInfo subclass as in
the following example:

public class WorldDynaAdminHierarchyInfo extends DynaAdminHierarchyInfo \

{
 public WorldDynaAdminHierarchyInfo()

 {
 super();
 addLevel(1, "world_continents", null, null);
 addLevel(2, "world_countries", "properties.COUNTRY CODE",
"properties.CONTINENT");
 addLevel(3, "world_states_provinces", null, "properties.ISO");
 }

}

2.7.9.1 Sample HierarchyInfo Implementation

The HierarchyInfo interface contains the following methods, which must be
implemented to describe a hierarchy. The methods can be divided in to the following
three categories:

• Methods to describe the hierarchy

• Methods to load data

• Methods to supply data

Additionally there is an initialize() method, which can be used to perform any
initialization and to save and read data both to and from the job configuration

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-41

void initialize(JobConf conf);

//methods to describe the hierarchy

String getLevelName(int level);
int getLevelNumber(String levelName);
int getNumberOfLevels();

//methods to load data

void load(Path[] hierDataPaths, int fromLevel, JobConf conf) throws Exception;
void loadFromIndex(HierarchyDataIndexReader[] readers, int fromLevel, JobConf conf)
throws Exception;

//methods to supply data

Collection<String> getEntriesIds(int level);
JGeometry getEntryGeometry(int level, String entryId);
String getParentId(int childLevel, String childId);

The following is a sample HierarchyInfo implementation, which takes the previously
mentioned world layers as the hierarchy levels. The first section contains the initialize
method and the methods used to describe the hierarchy. In this case, the initialize
method does nothing. The methods mentioned in the following example use the
hierarchyLevelNames array to provide the hierarchy description. The instance
variables entriesGeoms and entriesParent are arrays of java.util.Map,
which contains the entries geometries and entries parents respectively. The entries ids
are used as keys in both cases. Since the arrays indices are zero-based and the
hierarchy levels are one-based, the array indices correlate to the hierarchy levels as
array index + 1 = hierarchy level.

public class WorldHierarchyInfo implements HierarchyInfo
{

 private String[] hierarchyLevelNames = {"world_continents",
"world_countries", "world_states_provinces"};
 private Map<String, JGeometry>[] entriesGeoms = new Map[3];
 private Map<String, String>[] entriesParents = new Map[3];

 @Override
 public void initialize(JobConf conf)
 {

 //do nothing for this implementation
}

 @Override
 public int getNumberOfLevels()
 {
 return hierarchyLevelNames.length;
}

 @Override
 public String getLevelName(int level)
 {
 String levelName = null;
 if(level >=1 && level <= hierarchyLevelNames.length)
 {
 levelName = hierarchyLevelNames[level - 1];
 }

Oracle Big Data Spatial Vector Analysis

2-42 User's Guide and Reference

 return levelName;
 }

 @Override
 public int getLevelNumber(String levelName)
 {
 for(int i=0; i< hierarchyLevelNames.length; i++)
 {
 if(hierarchyLevelNames.equals(levelName)) return i+1;
 }
 return -1;
}

The following example contains the methods that load the different hierarchy levels
data. The load() method reads the data from the source files
world_continents.json, world_countries.json, and
world_states_provinces.json. For the sake of simplicity, the internally called
loadLevel() method is not specified, but it is supposed to parse and read the JSON
files.

The loadFromIndex() method only takes the information provided by the
HierarchyIndexReader instances passed as parameters. The load() method is
supposed to be executed only once and only if a hierarchy index has not been created,
in a job. Once the data is loaded, it is automatically indexed and loadFromIndex()
method is called every time the hierarchy data is loaded into the memory.

 @Override
 public void load(Path[] hierDataPaths, int fromLevel, JobConf conf) throws
Exception {
 int toLevel = fromLevel + hierDataPaths.length - 1;
 int levels = getNumberOfLevels();

 for(int i=0, level=fromLevel; i<hierDataPaths.length && level<=levels; i++,
level++)
 {

 //load current level from the current path

 loadLevel(level, hierDataPaths[i]);
 }
 }

 @Override
 public void loadFromIndex(HierarchyDataIndexReader[] readers, int fromLevel,
JobConf conf)
 throws Exception
 {
 Text parentId = new Text();
 RecordInfoArrayWritable records = new RecordInfoArrayWritable();
 int levels = getNumberOfLevels();

 //iterate through each reader to load each level's entries

 for(int i=0, level=fromLevel; i<readers.length && level<=levels; i++, level++)
 {
 entriesGeoms[level - 1] = new Hashtable<String, JGeometry>();
 entriesParents[level - 1] = new Hashtable<String, String>();

 //each entry is a parent record id (key) and a list of entries as RecordInfo
(value)

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-43

 while(readers[i].nextParentRecords(parentId, records))
 {
 String pId = null;

 //entries with no parent will have the parent id UNDEFINED_PARENT_ID. Such
is the case of the first level entries

 if(! UNDEFINED_PARENT_ID.equals(parentId.toString()))
 {
 pId = parentId.toString();
 }

 //add the current level's entries

 for(Object obj : records.get())
 {
 RecordInfo entry = (RecordInfo) obj;
 entriesGeoms[level - 1].put(entry.getId(), entry.getGeometry());
 if(pId != null)
 {
 entriesParents[level -1].put(entry.getId(), pId);
 }
 }//finishin loading current parent entries
 }//finish reading single hierarchy level index
 }//finish iterating index readers
}

Finally, the following code listing contains the methods used to provide information of
individual entries in each hierarchy level. The information provided is the ids of all the
entries contained in a hierarchy level, the geometry of each entry, and the parent of
each entry.

@Override
public Collection<String> getEntriesIds(int level)
{
 Collection<String> ids = null;

 if(level >= 1 && level <= getNumberOfLevels() && entriesGeoms[level - 1] !=
null)
 {

 //returns the ids of all the entries from the given level

 ids = entriesGeoms[level - 1].keySet();
 }
 return ids;
}

@Override
public JGeometry getEntryGeometry(int level, String entryId)
{
 JGeometry geom = null;
 if(level >= 1 && level <= getNumberOfLevels() && entriesGeoms[level - 1] !=
null)
 {

 //returns the geometry of the entry with the given id and level

 geom = entriesGeoms[level - 1].get(entryId);
 }
 return geom;

Oracle Big Data Spatial Vector Analysis

2-44 User's Guide and Reference

}

@Override
public String getParentId(int childLevel, String childId)
{
 String parentId = null;
 if(childLevel >= 1 && childLevel <= getNumberOfLevels() &&
entriesGeoms[childLevel - 1] != null)
 {

 //returns the parent id of the entry with the given id and level

 parentId = entriesParents[childLevel - 1].get(childId);
 }
 return parentId;
 }
}//end of class

2.7.10 Using JGeometry in MapReduce Jobs
The Spatial Hadoop Vector Analysis only contains a small subset of the functionality
provided by the Spatial Java API, which can also be used in the MapReduce jobs. This
section provides some simple examples of how JGeometry can be used in Hadoop for
spatial processing. The following example contains a simple mapper that performs the
IsInside test between a dataset and a query geometry using the JGeometry class.

In this example, the query geometry ordinates, srid, geodetic value and tolerance used
in the spatial operation are retrieved from the job configuration in the configure
method. The query geometry, which is a polygon, is preprocessed to quickly perform
the IsInside operation.

The map method is where the spatial operation is executed. Each input record value is
tested against the query geometry and the id is returned, when the test succeeds.

public class IsInsideMapper extends MapReduceBase implements Mapper<LongWritable,
Text, NullWritable, Text>
{
 private JGeometry queryGeom = null;
 private int srid = 0;
 private double tolerance = 0.0;
 private boolean geodetic = false;
 private Text outputValue = new Text();
 private double[] locationPoint = new double[2];

 @Override
 public void configure(JobConf conf)
 {
 super.configure(conf);
 srid = conf.getInt("srid", 8307);
 tolerance = conf.getDouble("tolerance", 0.0);
 geodetic = conf.getBoolean("geodetic", true);

 //The ordinates are represented as a string of comma separated double values

 String[] ordsStr = conf.get("ordinates").split(",");
 double[] ordinates = new double[ordsStr.length];
 for(int i=0; i<ordsStr.length; i++)
 {
 ordinates[i] = Double.parseDouble(ordsStr[i]);
 }

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-45

 //create the query geometry as two-dimensional polygon and the given srid

 queryGeom = JGeometry.createLinearPolygon(ordinates, 2, srid);

 //preprocess the query geometry to make the IsInside operation run faster

 try
 {
 queryGeom.preprocess(tolerance, geodetic,
EnumSet.of(FastOp.ISINSIDE));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 @Override
 public void map(LongWritable key, Text value,
 OutputCollector<NullWritable, Text> output, Reporter reporter)
 throws IOException
 {

 //the input value is a comma separated values text with the following columns:
id, x-ordinate, y-ordinate

 String[] tokens = value.toString().split(",");

 //create a geometry representation of the record's location

 locationPoint[0] = Double.parseDouble(tokens[1]);//x ordinate
 locationPoint[1] = Double.parseDouble(tokens[2]);//y ordinate
 JGeometry location = JGeometry.createPoint(locationPoint, 2, srid);

 //perform spatial test

 try
 {
 if(location.isInside(queryGeom, tolerance, geodetic)){

 //emit the record's id

 outputValue.set(tokens[0]);
 output.collect(NullWritable.get(), outputValue);
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}
}

A similar approach can be used to perform a spatial operation on the geometry itself.
For example, by creating a buffer. The following example uses the same text value
format and creates a buffer around each record location. The mapper output key and
value are the record id and the generated buffer, which is represented as a
JGeometryWritable. The JGeometryWritable is a Writable implementation
contained in the Vector Analysis API that holds a JGeometry instance.

Oracle Big Data Spatial Vector Analysis

2-46 User's Guide and Reference

public class BufferMapper extends MapReduceBase implements Mapper<LongWritable,
Text, Text, JGeometryWritable>
{
 private int srid = 0;
 private double bufferWidth = 0.0;
 private Text outputKey = new Text();
 private JGeometryWritable outputValue = new JGeometryWritable();
 private double[] locationPoint = new double[2];

 @Override
 public void configure(JobConf conf)
 {
 super.configure(conf);
 srid = conf.getInt("srid", 8307);

 //get the buffer width

 bufferWidth = conf.getDouble("bufferWidth", 0.0);
 }

 @Override
 public void map(LongWritable key, Text value,
 OutputCollector<Text, JGeometryWritable> output, Reporter reporter)
 throws IOException
 {

 //the input value is a comma separated record with the following
columns: id, longitude, latitude

 String[] tokens = value.toString().split(",");

 //create a geometry representation of the record's location

 locationPoint[0] = Double.parseDouble(tokens[1]);
 locationPoint[1] = Double.parseDouble(tokens[2]);
 JGeometry location = JGeometry.createPoint(locationPoint, 2, srid);

 try
 {

 //create the location's buffer

 JGeometry buffer = location.buffer(bufferWidth);

 //emit the record's id and the generated buffer

 outputKey.set(tokens[0]);
 outputValue.setGeometry(buffer);
 output.collect(outputKey, outputValue);
 }

 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Oracle Big Data Spatial Vector Analysis

Using Big Data Spatial and Graph with Spatial Data 2-47

2.7.11 Tuning Performance Data of Job Running Times using Vector Analysis API
The table lists some running times for jobs built using the Vector Analysis API. The
jobs were executed using a 4-node cluster. The times may vary depending on the
characteristics of the cluster. The test dataset contains over One billion records and the
size is above 1 terabyte.

Table 2-2 Performance time for running jobs using Vector Analysis API

Job Type Time taken (approximate value)

Spatial Indexing 2 hours

Spatial Filter with Spatial Index 1 hour

Spatial Filter without Spatial Index 3 hours

Hierarchy count with Spatial Index 5 minutes

Hierarchy count without Spatial Index 3 hours

The time taken for the jobs can be decreased by increasing the maximum split size
using any of the following configuration parameters.

mapred.max.split.size
mapreduce.input.fileinputformat.split.maxsize

This results in more splits are being processed by each single mapper and improves
the execution time. This is done by using the SpatialFilterInputFormat (spatial
indexing) or FileSplitInputFormat (spatial hierarchical join, buffer). Also, the
same results can be achieved by using the implementation of
CombineFileInputFormat as internal InputFormat.

2.8 Using the Oracle Big Data Spatial and Graph Vector Console
You can use the Oracle Big Data Spatial and Graph Vector Console to perform tasks
related to spatial indexing and creating and showing thematic maps.

• Creating a Spatial Index Using the Console

• Exploring the Indexed Spatial Data

• Running a Categorization Job Using the Console

• Viewing the Categorization Results

• Saving Categorization Results to a File

• Creating and Deleting Templates

• Configuring Templates

• Running a Clustering Job Using the Console

• Viewing the Clustering Results

• Saving Clustering Results to a File

• Running a Binning Job Using the Console

Using the Oracle Big Data Spatial and Graph Vector Console

2-48 User's Guide and Reference

• Viewing the Binning Results

• Saving Binning Results to a File

• Running a Job to Create an Index Using the Command Line

• Running a Job to Perform a Spatial Filtering

• Running a Job to Create a Hierarchy Result

• Running a Job to Generate Buffer

2.8.1 Creating a Spatial Index Using the Console
To create a spatial index using the Oracle Big Data Spatial and Graph Vector Console,
follow these steps.

1. Open the console:http://
<oracle_big_data_spatial_vector_console>:8080/spatialviewer/

2. Click Create Index.

3. Specify all the required details:

a. Index name.

b. Path of the file or files to index in HDFS. For example, hdfs://
<server_name_to_store_index>:8020/user/oracle/bdsg/
tweets.json.

c. New index path: This is the job output path. For example: hdfs://
<oracle_big_data_spatial_vector_console>:8020/ user/
oracle/bdsg/index.

d. SRID of the geometries to be indexed. Example: 0.5

e. Tolerance of the geometries to be indexed. Example: 8307

f. Input Format class: The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputF
ormat

g. Record Info Provider class: The class that provides the spatial information.
For example: oracle.spatial.hadoop.vector.geojson.
GeoJsonRecordInfoProvider.

Note:

If the InputFormat class or the RecordInfoProvider class is not in the
API, or in the hadoop API classes, then a jar with the user-defined classes
must be provided. To be able to use this jar the user must add it in the
$JETTY_HOME/webapps/spatialviewer/WEB-INF/lib directory and
restart the server.

h. Whether the MVSuggest service must be used or not. If the geometry has to
be found from a location string, then use the MVSuggest service. In this case
the provided RecordInfoProvider must implement the interface

Using the Oracle Big Data Spatial and Graph Vector Console

Using Big Data Spatial and Graph with Spatial Data 2-49

oracle.spatial.hadoop.vector.
LocalizableRecordInfoProvider.

i. MVSuggest service URL(Optional): If the geometry has to be found from a
location string then use the MVSuggest service. If the service URL is localhost
then each data node must have the MVSuggest application started and
running. In this case, the new index contains the point geometry and the layer
provided by MVSuggest for each record. If the geometry is a polygon then the
geometry is a centroid of the polygon. For example: http://localhost:
8080

j. MVSuggest Templates (Optional): When using the MVSuggest service, the
user can define the templates used to create the index.

k. Outcome notification email sent to (Optional): Provide email Ids to receive the
notifications when the job finished. Separate multiple email Ids by a
semicolon. For example, mymail@example.com

4. Click Create.

The submitted job is listed and you should wait to receive a mail notifying that the
job completed successfully.

2.8.2 Exploring the Indexed Spatial Data
To explore indexed spatial data, follow these steps.

1. Open the console:http://
<oracle_big_data_spatial_vector_console>:8080/spatialviewer/

2. Click Edplore Data.

For example, you can:

• Select the desired indexed data and click Refresh Map to see the data on the map.

• Change the background map style.

• Change the real data zoom level.

• Show data using a heat map.

2.8.3 Running a Categorization Job Using the Console
You can run a categorization job with or without the spatial index. Follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8080/
spatialviewer/.

2. Click Categorization, then Run Job.

3. Select either With Index or Without Index and provide the following details, as
required:

• With Index

a. Index name

• Without Index

Using the Oracle Big Data Spatial and Graph Vector Console

2-50 User's Guide and Reference

a. Path of the data: Provide the HDFS data path. For example, hdfs://
<oracle_big_data_spatial_vector_console>:8020/user/ /
user/oracle/bdsg/tweets.json.

b. JAR with user classes (Optional): If the InputFormat class or the
RecordInfoProvider class is not in the API, or in the hadoop API
classes, then a jar with the user-defined classes must be provided. To be
able to use this jar the user must add it in the $JETTY_HOME/webapps/
spatialviewer/WEB-INF/lib directory and restart the server.

c. Input Format class: The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInpu
tFormat

d. Record Info Provider class: The class that will provide the spatial
information. For example:
oracle.spatial.hadoop.vector.geojson.
GeoJsonRecordInfoProvider.

e. If the MVSuggest service has to be used or not. If the geometry must be
found from a location string, then use the MVSuggest service. In this case
the provided RecordInfoProvider has to implement the interface
oracle.spatial.hadoop.vector.
LocalizableRecordInfoProvider.

4. Templates: The templates to create the thematic maps.

Note:

If a template refers to point geometries (for example, cities), the result
returned is empty for that template, if MVSuggest is not used. This is because
the spatial operations return results only for polygons.

Tip:

When using the MVSuggest service the results will be more accurate if all the
templates that could match the results are provided. For example, if the data
can refer to any city, state, country, or continent in the world, then the better
choice of templates to build results are World Continents, World Countries,
World State Provinces, and World Cities. On the other hand, if the data is
from the USA states and counties, then the suitable templates are USA States
and USA Counties. If an index that was created using the MVSuggest service
is selected, then select the top hierarchy for an optimal result. For example, if it
was created using World Countries, World State Provinces, and World Cities,
then use World Countries as the template.

5. Output path: The Hadoop job output path. For example: hdfs://
<oracle_big_data_spatial_vector_console>:8020/user/oracle/
bdsg/catoutput

6. Result name: The result name. If a result exists for a template with the same name,
it is overwritten. For example, Tweets test.

7. Outcome notification email sent to (Optional): Provide email Ids to receive the
notifications when the job finished. Separate multiple email Ids by a semicolon.
For example, mymail@abccorp.com.

Using the Oracle Big Data Spatial and Graph Vector Console

Using Big Data Spatial and Graph with Spatial Data 2-51

2.8.4 Viewing the Categorization Results
To view the categorization results, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8080/
spatialviewer/.

2. Click Categorization, then View Results.

3. Click any one of the Templates. For example, World Continents.

The World Continents template is displayed.

4. Click any one of the Results displayed.

Different continents appear with different patches of colors.

5. Click any continent from the map. For example, North America.

The template changes to World Countries and the focus changes to North America
with the results by country.

2.8.5 Saving Categorization Results to a File
You can save categorization results to a file (for example, the result file created with a
job executed from the command line) on the local system for possible future uploading
and use. The templates are located in the folder $JETTY_HOME/webapps/
spatialviewer/templates. The templates are GeoJSON files with features and all
the features have ids. For example, the first feature in the template USA States starts
with: {"type":"Feature","_id":"WYOMING",...

The results must be JSON files with the following format:
{"id":"JSONFeatureId","result":result}.

For example, if the template USA States is selected, then a valid result is a file
containing: {"id":"WYOMING","result":3232} {"id":"SOUTH
DAKOTA","result":74968}

1. Click Categorization, then View Results.

2. Select a Template .

3. Specify a Name.

4. Click Choose File to select the File location.

5. Click Save.

The results can be located in the $JETTY_HOME/webapps/spatialviewer/
results folder.

2.8.6 Creating and Deleting Templates
To create new templates do the following:

1. Add the template JSON file in the folder $JETTY_HOME/webapps/
spatialviewer/templates/.

2. Add the template configuration file in the folder $JETTY_HOME/webapps/
spatialviewer/templates/_config_.

Using the Oracle Big Data Spatial and Graph Vector Console

2-52 User's Guide and Reference

To delete the template, delete the JSON and configuration files added in steps 1 and 2.

2.8.7 Configuring Templates
Each template has a configuration file. The template configuration files are located in
the folder $JETTY_HOME/webapps/spatialviewer/templates/_config_. The
name of the configuration file is the same as the template files suffixed with
config.json instead of .json.For example, the configuration file name of the
template file usa_states.json is usa_states.config.json. The configuration
parameters are:

• name: Name of the template to be shown on the console. For example, name: USA
States.

• display_attribute: When displaying a categorization result, a cursor move on the
top of a feature displays this property and result of the feature. For example,
display_attribute: STATE NAME.

• point_geometry: True, if the template contains point geometries and false, in case
of polygons. For example, point_geometry: false.

• child_templates (optional): The templates that can have several possible child
templates separated by a coma. For example, child_templates:
["world_states_provinces, usa_states(properties.COUNTRY
CODE:properties.PARENT_REGION)"].

If the child templates do not specify a linked field, it means that all the features
inside the parent features are considered as child features. In this case, the
world_states_provinces doesn't specify any fields. If the link between parent
and child is specified, then the spatial relationship doesn't apply and the feature
properties link are checked. In the above example, the relationship with the
usa_states is found with the property COUNTRY CODE in the current template,
and the property PARENT_REGION in the template file usa_states.json.

• srid: The SRID of the template's geometries. For example, srid: 8307.

• back_polygon_template_file_name (optional): A template with polygon geometries
to set as background when showing the defined template. For example,
back_polygon_template_file_name: usa_states.

• vectorLayers: Configuration specific to the MVSuggest service. For example:

{
"vectorLayers": [
{
 "gnidColumns":["_GNID"],
 "boostValues":[2.0,1.0,1.0,2.0]
 }
]
 }

Where:

– gnidColumns is the name of the column(s) within the Json file that represents
the Geoname ID. This value is used to support multiple languages with
MVSuggest. (See references of that value in the file templates/_geonames_/
alternateNames.json.) There is nodefault value for this property.

Using the Oracle Big Data Spatial and Graph Vector Console

Using Big Data Spatial and Graph with Spatial Data 2-53

– boostValues is an array of float numbers that represent how important a column
is within the "properties" values for a given row. The higher the number, the
more important that field is. A value of zero means the field will be ignored.
When boostValues is not present, all fields receive a default value of 1.0,
meaning they all are equally important properties. The MVSuggest service may
return different results depending on those values. For a Json file with the
following properties, the boost values might be as follows:

"properties":{"Name":"New York City","State":"NY","Country":"United
States","Country Code":"US","Population":8491079,"Time Zone":"UTC-5"}
"boostValues":[3.0,2.0,1.0,1.0,0.0,0.0]

2.8.8 Running a Clustering Job Using the Console
To run a clustering job, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8080/
spatialviewer/.

2. Click Clustering, then Run Job.

3. Provide the following details, as required:

a. Path of the data: Provide the HDFS data path. For example, hdfs://
<oracle_big_data_spatial_vector_console>:8020/user/ /
user/oracle/bdsg/tweets.json.

b. The SRID of the geometries. For example: 8307

c. The tolerance of the geometries. For example: 0.5

d. JAR with user classes (Optional): If the InputFormat class or the
RecordInfoProvider class is not in the API, or in the hadoop API classes,
then a jar with the user-defined classes must be provided. To be able to use
this jar the user must add it in the $JETTY_HOME/webapps/
spatialviewer/WEB-INF/lib directory and restart the server.

e. Input Format class: The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputF
ormat

f. Record Info Provider class: The class that will provide the spatial information.
For example: oracle.spatial.hadoop.vector.geojson.
GeoJsonRecordInfoProvider.

g. Output path: The Hadoop job output path. For example: hdfs://
<oracle_big_data_spatial_vector_console>:8020/user/
oracle/bdsg/catoutput

h. Result name: The result name. If a result exists for a template with the same
name, it is overwritten. For example, Tweets test.

i. Outcome notification email sent to (Optional): Provide email Ids to receive the
notifications when the job finished. Separate multiple email Ids by a
semicolon. For example, mymail@abccorp.com.

2.8.9 Viewing the Clustering Results
To view the clustering results, follow these steps.

Using the Oracle Big Data Spatial and Graph Vector Console

2-54 User's Guide and Reference

1. Open http://<oracle_big_data_spatial_vector_console>:8080/
spatialviewer/.

2. Click Clustering, then View Results.

3. Click any one of the Results displayed.

2.8.10 Saving Clustering Results to a File
You can save clustering results to a file on your local system, for later uploading and
use. To save the clustering results to a file, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8080/
spatialviewer/.

2. Click Clustering, then View Results.

3. Click the icon for saving the results.

4. Specify the SRID of the geometries. For example: 8307

5. Click Choose File and select the file location.

6. Click Save.

2.8.11 Running a Binning Job Using the Console
You can run a binning job with or without the spatial index. Follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8080/
spatialviewer/.

2. Click Binning, then Run Job.

3. Select either With Index or Without Index and provide the following details, as
required:

• With Index

a. Index name

• Without Index

a. Path of the data: Provide the HDFS data path. For example, hdfs://
<oracle_big_data_spatial_vector_console>:8020/user/ /
user/oracle/bdsg/tweets.json.

b. The SRID of the geometries. For example: 8307

c. The tolerance of the geometries. For example: 0.5

d. JAR with user classes (Optional): If the InputFormat class or the
RecordInfoProvider class is not in the API, or in the hadoop API
classes, then a jar with the user-defined classes must be provided. To be
able to use this jar the user must add it in the $JETTY_HOME/webapps/
spatialviewer/WEB-INF/lib directory and restart the server.

e. Input Format class: The input format class. For example:
oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInpu
tFormat

Using the Oracle Big Data Spatial and Graph Vector Console

Using Big Data Spatial and Graph with Spatial Data 2-55

f. Record Info Provider class: The class that will provide the spatial
information. For example:
oracle.spatial.hadoop.vector.geojson.
GeoJsonRecordInfoProvider.

4. Binning grid minimum bounding rectangle (MBR). You can click the icon for
seeing the MBR on the map.

5. Binning shape: hexagon (specify the hexagon width) or rectangle (specify the
width and height).

6. Thematic attribute: If the job uses an index, double-click to see the possible values,
which are those returned by the function getExtraFields of the
RecordInfoProvider used when creating the index. If the job does not use an
index, then the field can be one of the fields returned by the function
getExtraFields of the specified RecordInfoProvider class. In any case, the
count attribute is always available and specifies the number of records in the bin.

7. Output path: The Hadoop job output path. For example: hdfs://
<oracle_big_data_spatial_vector_console>:8020/user/oracle/
bdsg/binningOutput

8. Result name: The result name. If a result exists for a template with the same name,
it is overwritten. For example, Tweets test.

9. Outcome notification email sent to (Optional): Provide email Ids to receive the
notifications when the job finished. Separate multiple email Ids by a semicolon.
For example, mymail@abccorp.com.

2.8.12 Viewing the Binning Results
To view the binning results, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8080/
spatialviewer/.

2. Click Binning, then View Results.

3. Click any of the Results displayed.

2.8.13 Saving Binning Results to a File
You can save binning results to a file on your local system, for later uploading and use.
To save the binning results to a file, follow these steps.

1. Open http://<oracle_big_data_spatial_vector_console>:8080/
spatialviewer/.

2. Click Binning, then View Results.

3. Click the icon for saving the results.

4. Specify the SRID of the geometries. For example: 8307

5. Specify the thematic attribute, which must be a property of the features in the
result. For example, the count attribute can be used to create results depending on
the number of results per bin.

Using the Oracle Big Data Spatial and Graph Vector Console

2-56 User's Guide and Reference

6. Click Choose File and select the file location.

7. Click Save.

2.8.14 Running a Job to Create an Index Using the Command Line
Run the following command to generate an index:

hadoop jar <HADOOP_LIB_PATH>/<jarfile>
oracle.spatial.hadoop.vector.demo.job.SpatialIndexing <DATA_PATH>
<SPATIAL_INDEX_PATH> <INPUT_FORMAT_CLASS> <RECORD_INFO_PROVIDER_CLASS>

Where,

• jarfile is the jar file to be specified by the user for spatial indexing.

• DATA_PATH is the location of the data to be indexed.

• SPATIAL_INDEX_PATH is the location of the resulting spatial index.

• INPUT_FORMAT_CLASS is the InputFormat implementation used to read the
data.

• RECORD_INFO_PROVIDER_CLASS is the implementation used to extract
information from the records.

The following example uses the command line to create an index.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector-demo.jar
oracle.spatial.hadoop.vector.demo.job.SpatialIndexing "/user/hdfs/demo_vector/tweets/
part*" /user/hdfs/demo_vector/tweets/spatial_index
org.apache.hadoop.mapred.TextInputFormat
oracle.spatial.hadoop.vector.demo.usr.TwitterLogRecordInfoProvider

Note:

The preceding example uses the demo job that comes preloaded.

2.8.15 Running a Job to Perform a Spatial Filtering
Run the following command to perform a spatial filter:

hadoop jar HADOOP_LIB_PATH/sdohadoop-vector-demo.jar
oracle.spatial.hadoop.vector.demo.job.TwitterLogSearch <DATA_PATH> <RESULT_PATH>
<SEARCH_TEXT> <SPATIAL_INTERACTION> <GEOMETRY> <SRID> <TOLERANCE> <GEODETIC>
<SPATIAL_INDEX_PATH>

Where,

• DATA_PATH is the data to be filtered.

• RESULT_PATH is the path where the results are generated.

• SEARCH_TEXT is the text to be searched.

• SPATIAL_INTERACTION is the type of spatial interaction. It can be either 1 (is
inside) or 2 (any interact).

• GEOMETRY is the geometry used to perform the spatial filter. It should be expressed
in JSON format.

Using the Oracle Big Data Spatial and Graph Vector Console

Using Big Data Spatial and Graph with Spatial Data 2-57

• SRID is the SRS id of the query geometry.

• TOLERANCE is the tolerance used for the spatial search.

• GEODETIC mentions whether the geometries are geodetic or not.

• SPATIAL_INDEX_PATH is the path to a previously generated spatial index.

The following example demonstrates the counts all tweets containing some text and
interacting with a given geometry.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector-demo.jar
oracle.spatial.hadoop.vector.demo.job.TwitterLogSearch "/user/hdfs/demo_vector/
tweets/part*" /user/hdfs/demo_vector/tweets/text_search feel 2 '{"type":"Polygon",
"coordinates":[[-106.64595, 25.83997, -106.64595, 36.50061, -93.51001, 36.50061,
-93.51001, 25.83997, -106.64595, 25.83997]]}' 8307 0.0 true /user/hdfs/demo_vector/
tweets/spatial_index

Note:

The preceding example uses the demo job that comes preloaded.

2.8.16 Running a Job to Create a Hierarchy Result
Run the following command to create a hierarchy result:

hadoop jar HADOOP_LIB_PATH/sdohadoop-vector-demo.jar
oracle.spatial.hadoop.vector.demo.job.HierarchicalCount spatial <SPATIAL_INDEX_PATH>
<RESULT_PATH> <HIERARCHY_INFO_CLASS> <SPATIAL_INTERACTION> <SRID> <TOLERANCE>
<GEODETIC> <HIERARCHY_DATA_INDEX_PATH> <HIERARCHY_DATA_PATHS>

Where,

• SPATIAL_INDEX_PATH is the path to a previously generated spatial index. If there
are files other than the spatial index path files in this path (for example, the hadoop
generated _SUCCESS file), then add the following pattern:
SPATIAL_INDEX_PATH/part*/data.

• RESULT_PATHis the path where the results are generated. There should be a file
named XXXX_count.json for each hierarchy level.

• HIERARCHY_INFO_CLASS is the location of the resulting spatial index.

• INPUT_FORMAT_CLASS is the HierarchyInfo implementation. It defines the
structure of the current hierarchy data.

• SPATIAL_INTERACTION,SRID,TOLERANCE,GEODETIC, all these parameters
have the same meaning as defined previously for Text Search Job. They are used to
define the spatial operation between the data and the hierarchical information
geometries.

• HIERARCHY_DATA_INDEX_PATH is the path where the hierarchy data index will
be placed. This index is used by the job to avoid finding parent-children
relationships each time are required.

• HIERARCHY_DATA_PATHS are comma separated list of paths to the hierarchy data.
If a hierarchy index was created previously for the same hierarchy data it can be
omitted.

Using the Oracle Big Data Spatial and Graph Vector Console

2-58 User's Guide and Reference

The following example uses the command line to create an index.

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector-demo.jar
oracle.spatial.hadoop.vector.demo.job.HierarchicalCount spatial "/user/hdfs/
demo_vector/tweets/spatial_index/part*/data" /user/hdfs/demo_vector/tweets/
hier_count_spatial oracle.spatial.hadoop.vector.demo.usr.WorldAdminHierarchyInfo 1
8307 0.5 true /user/hdfs/demo_vector/world_hier_index file:///net/den00btb/scratch/
hsaucedo/spatial_bda/demo/vector/catalogs/world_continents.json,file:///net/den00btb/
scratch/hsaucedo/spatial_bda/demo/vector/catalogs/world_countries.json,file:///net/
den00btb/scratch/hsaucedo/spatial_bda/demo/vector/catalogs/
world_states_provinces.json

Note:

The preceding example uses the demo job that comes preloaded.

2.8.17 Running a Job to Generate Buffer
Run the following command to generate a buffer:

hadoop jar HADOOP_LIB_PATH/sdohadoop-vector-demo.jar
oracle.spatial.hadoop.vector.demo.job.Buffer <DATA_PATH> <RESULT_PATH>
<INPUT_FORMAT_CLASS> <RECORD_INFO_PROVIDER_CLASS> <BUFFER_WIDTH> <BUFFER_SMA>
<BUFFER_FLAT> <BUFFER_ARCTOL>

Where,

• DATA_PATH is the data to be filtered.

• RESULT_PATH is the path where the results are generated.

• INPUT_FORMAT_CLASS is the InputFormat implementation used to read the
data.

• RECORD_INFO_PROVIDER_CLASS is the RecordInfoProvider implementation
used to extract data from each record.

• BUFFER_WIDTH specifies the buffer width.

• BUFFER_SMA is the semi major axis.

• BUFFER_FLAT is the buffer flattening.

• BUFFER_ARCTOL is the arc tolerance for geodetic arc densification.

The following example demonstrates generating a buffer around each record
geometry. The resulting file is a MapFile where each entry corresponds to a record
from the input data. The entry key is the record id and the value is a RecordInfo
instance holding the generated buffer and the record location (path, start offset and
length).

hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop/lib/sdohadoop-vector-demo.jar
oracle.spatial.hadoop.vector.demo.job.Buffer "/user/hdfs/demo_vector/waterlines/
part*" /user/hdfs/demo_vector/waterlines/buffers
org.apache.hadoop.mapred.TextInputFormat
oracle.spatial.hadoop.vector.demo.usr.WorldSampleLineRecordInfoProvider 5.0

Using the Oracle Big Data Spatial and Graph Vector Console

Using Big Data Spatial and Graph with Spatial Data 2-59

Note:

The preceding example uses the demo job that comes preloaded.

2.9 Using Oracle Big Data Spatial and Graph Image Server Console
You can use the Oracle Big Data Spatial and Graph Image Server Console to tasks,
such as Loading Images to HDFS Hadoop Cluster to Create a Mosaic.

2.9.1 Loading Images to HDFS Hadoop Cluster to Create a Mosaic
Follow the instructions to create a mosaic:

1. Open http://<oracle_big_data_image_server_console>:8080/
spatialviewer/.

2. Type the username and password.

3. Click the Configuration tab and review the Hadoop configuration section.

By default the application is configured to work with the Hadoop cluster and no
additional configuration is required.

Note:

Only an admin user can make changes to this section.

4. Click the Hadoop Loader tab and review the displayed instructions or alerts.

5. Follow the instructions and update the runtime configuration, if necessary.

6. Click the Folder icon.

The File System dialog displays the list of image files and folders.

7. Select the folders or files as required and click Ok.

The complete path to the image file is displayed.

8. Click Load Images.

Wait for the images to be loaded successfully. A message is displayed.

9. Proceed to create a mosaic, if there are no errors displayed.

Using Oracle Big Data Spatial and Graph Image Server Console

2-60 User's Guide and Reference

3
Configuring Property Graph Support

This chapter explains how to configure the support for property graphs in a Big Data
environment.

It assumes that you have already performed the installation, either on a Big Data
Appliance (see Installing Oracle Big Data Spatial and Graph on an Oracle Big Data
Appliance) or on an Apache Hadoop system (see Installing Property Graph Support
on a CDH Cluster or Other Hardware).

• Tuning the Software Configuration

3.1 Tuning the Software Configuration
You might be able to improve the performance of property graph support by altering
the database and Java configuration settings. The suggestions provided are guidelines,
which you should follow only after carefully and thoroughly evaluating your system.

• Tuning Apache HBase for Use With Property Graphs

• Tuning Oracle NoSQL Database for Use with Property Graphs

3.1.1 Tuning Apache HBase for Use With Property Graphs
Modifications to the default Apache HBase and Java Virtual Machine configurations
can improve performance.

• Modifying the Apache HBase Configuration

• Modifying the Java Memory Settings

3.1.1.1 Modifying the Apache HBase Configuration

To modify the Apache HBase configuration, follow the steps in this section for your
CDH release. (Note that specific steps might change from one CDH release to the
next.)

For CDH 5.2.x and CDH 5.3.x:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. In the Category panel on the left, expand Service-Wide, and then choose
Advanced.

5. Edit the value of HBase Service Advanced Configuration Snippet (Safety Valve)
for hbase-site.xml as follows:

Configuring Property Graph Support 3-1

<property>
 <name>hbase.regionserver.handler.count</name>
 <value>32</value>
</property>
<property>
 <name>hbase.hregion.max.filesize</name>
 <value>1610612736</value>
</property>
<property>
 <name>hbase.hregion.memstore.block.multiplier</name>
 <value>4</value>
</property>
<property>
 <name>hbase.hregion.memstore.flush.size</name>
 <value>134217728</value>
</property>
<property>
 <name>hbase.hstore.blockingStoreFiles</name>
 <value>200</value></property>
<property>
 <name>hbase.hstore.flusher.count</name>
 <value>1</value>
</property>

If the property already exists, then replace the value as required. Otherwise, add
the XML property description.

6. Click Save Changes.

7. Expand the Actions menu, and then choose Restart or Rolling Restart, whichever
option better suits your situation.

For CDH 5.4.x:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. Expand SCOPE.

5. Click HBase (Service-wide), scroll to the bottom of the page, and select Display
All Entries (not Display 25 Entries).

6. On this page, locate HBase Service Advanced Configuration Snippet (Safety
Valve) for hbase-site.xml, and enter the following value for the <property>
element:

<property>
 <name>hbase.regionserver.handler.count</name>
 <value>32</value>
</property>
<property>
 <name>hbase.hregion.max.filesize</name>
 <value>1610612736</value>
</property>
<property>
 <name>hbase.hregion.memstore.block.multiplier</name>
 <value>4</value>
</property>
<property>

Tuning the Software Configuration

3-2 User's Guide and Reference

 <name>hbase.hregion.memstore.flush.size</name>
 <value>134217728</value>
</property>
<property>
 <name>hbase.hstore.blockingStoreFiles</name>
 <value>200</value></property>
<property>
 <name>hbase.hstore.flusher.count</name>
 <value>1</value>
</property>

If the property already exists, then replace the value as required. Otherwise, add
the XML property description.

7. Click Save Changes.

8. Expand the Actions menu, and then choose Restart or Rolling Restart, whichever
option better suits your situation.

3.1.1.2 Modifying the Java Memory Settings

To modify the Java memory settings, follow the steps in this section for your CDH
release. (Note that specific steps might change from one CDH release to the next.)

For CDH 5.2.x and CDH 5.3.x:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. For RegionServer Group (default and others), click Advanced, and use the
following for Java Configuration Options for HBase RegionServer:

-Xmn256m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -
XX:CMSInitiatingOccupancyFraction=70 -XX:+UseCMSInitiatingOccupancyOnly

5. Click Resource Management, and enter an appropriate value (for example, 18G)
for Java Heap Size of HBase RegionServer.

6. Click Save Changes.

7. Expand the Actions menu, and then choose Restart or Rolling Restart, whichever
option better suits your situation.

For CDH 5.4.x:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, click HBase in the list of services on the left.

3. On the HBase page, click the Configuration tab.

4. Expand SCOPE.

5. Click RegionServer, scroll to the bottom of the page, and select Display All
Entries (not Display 25 Entries).

6. On this page, for Java Configuration Options for HBase RegionServer, enter the
following value:

Tuning the Software Configuration

Configuring Property Graph Support 3-3

-Xmn256m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -
XX:CMSInitiatingOccupancyFraction=70 -XX:+UseCMSInitiatingOccupancyOnly

7. For Java Heap Size of HBase RegionServer in Bytes, enter an appropriate value
(for example, 18G).

8. Click Save Changes.

9. Expand the Actions menu, and then choose Restart or Rolling Restart, whichever
option better suits your situation.

See Also:

For detailed information about Java garbage collection, see:

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/
gctuning/

For descriptions of all settings, see the Java Tools Reference:

https://docs.oracle.com/javase/8/docs/technotes/tools/
unix/java.html

3.1.2 Tuning Oracle NoSQL Database for Use with Property Graphs
To obtain the best performance from Oracle NoSQL Database:

• Ensure that the replication groups (shards) are balanced.

• Adjust the user process resource limit setting (ulimit). For example:

ulimit -u 131072

• Set the heap size of the Java Virtual Machines (JVMs) on the replication nodes to
enable the B-tree indexes to fit in memory.

To set the heap size, use either the -memory_mb option of the makebookconfig
command or the memory_mb parameter for the storage node.

Oracle NoSQL Database uses 85% of memory_mb as the heap size for processes
running on the storage node. If the storage node hosts multiple replication nodes,
then the heap is divided equally among them. Each replication node uses a cache
that is 70% of the heap.

For example, if you set memory_mb to 3000 MB on a storage node that hosts two
replication nodes, then each replication node has the following:

– 1275 MB heap, calculated as (3000 MB * .85)/2

– 892 MB cache, calculated as 1275 MB * .70

See Also:

Oracle NoSQL Database FAQ at

http://www.oracle.com/technetwork/products/nosqldb/
learnmore/nosqldb-
faq-518364.html#HowdoesNoSQLDBbudgetmemory

Tuning the Software Configuration

3-4 User's Guide and Reference

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/
http://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/java.html
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosqldb-faq-518364.html#HowdoesNoSQLDBbudgetmemory
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosqldb-faq-518364.html#HowdoesNoSQLDBbudgetmemory
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosqldb-faq-518364.html#HowdoesNoSQLDBbudgetmemory

4
Using Property Graphs in a Big Data

Environment

This chapter provides conceptual and usage information about creating, storing, and
working with property graph data in a Big Data environment.

• About Property Graphs

• About Property Graph Data Formats

• Getting Started With Property Graphs

• Using Java APIs for Property Graph Data

• Managing Text Indexing for Property Graph Data

• Support for Secure Oracle NoSQL Database

• Support for Secure Apache HBase/Hadoop

• Using the Groovy Shell with Property Graph Data

• Exploring the Sample Programs

• Oracle Flat File Format Definition

• Example Python User Interface

4.1 About Property Graphs
Property graphs allow an easy association of properties (key-value pairs) with graph
vertices and edges, and they enable analytical operations based on relationships across
a massive set of data.

• What Are Property Graphs?

• What Is Big Data Support for Property Graphs?

4.1.1 What Are Property Graphs?
A property graph consists of a set of objects or vertices, and a set of arrows or edges
connecting the objects. Vertices and edges can have multiple properties, which are
represented as key-value pairs.

Each vertex has a unique identifier and can have:

• A set of outgoing edges

• A set of incoming edges

Using Property Graphs in a Big Data Environment 4-1

• A collection of properties

Each edge has a unique identifier and can have:

• An outgoing vertex

• An incoming vertex

• A text label that describes the relationship between the two vertices

• A collection of properties

Figure 4-1 illustrates a very simple property graph with two vertices and one edge.
The two vertices have identifiers 1 and 2. Both vertices have properties name and age.
The edge is from the outgoing vertex 1 to the incoming vertex 2. The edge as a text
label knows and a property type identifying the type of relationship between vertices
1 and 2.

Figure 4-1 Simple Property Graph Example

The property graph data model is not based on standards, but is similar to the W3C
standards-based Resource Description Framework (RDF) graph data model. The
property graph data model is simpler and much less precise than RDF. These
differences make it a good candidate for use cases such as these:

• Identifying influencers in a social network

• Predicting trends and customer behavior

• Discovering relationships based on pattern matching

• Identifying clusters to customize campaigns

4.1.2 What Is Big Data Support for Property Graphs?
Property graphs are supported for Big Data in Hadoop. This support consists of a data
access layer and an analytics layer. A choice of databases in Hadoop provides scalable
and persistent storage management.

Figure 4-2 provides an overview of the Oracle property graph architecture.

About Property Graphs

4-2 User's Guide and Reference

Figure 4-2 Oracle Property Graph Architecture

4.1.2.1 Analytics Layer

The analytics layer enables you to analyze property graphs using MapReduce
programs in a Hadoop cluster. It provides over 30 analytic functions, including path
calculation, ranking, community detection, and a recommender system.

4.1.2.2 Data Access Layer

The data access layer provides a set of Java APIs that you can use to create and drop
property graphs, add and remove vertices and edges, search for vertices and edges
using key-value pairs, create text indexes, and perform other manipulations. The Java
APIs include an implementation of TinkerPop Blueprints graph interfaces for the
property graph data model. The APIs also integrate with the Apache Lucene and
Apache SolrCloud, which are widely-adopted open-source text indexing and search
engines.

4.1.2.3 Storage Management

You can store your property graphs in either Oracle NoSQL Database or Apache
HBase. Both databases are mature and scalable, and support efficient navigation,
querying, and analytics. Both use tables to model the vertices and edges of property
graphs.

4.1.2.4 RESTful Web Services

You can also use RESTful web services to access the graph data and perform graph
operations. For example, you can use the Linux curl command to obtain vertices and
edges, and to add and remove graph elements.

4.2 About Property Graph Data Formats
The following graph formats are supported:

About Property Graph Data Formats

Using Property Graphs in a Big Data Environment 4-3

• GraphML Data Format

• GraphSON Data Format

• GML Data Format

• Oracle Flat File Format

4.2.1 GraphML Data Format
The GraphML file format uses XML to describe graphs. Example 4-1 shows a
GraphML description of the property graph shown in Figure 4-1.

See Also:

"The GraphML File Format" at

http://graphml.graphdrawing.org/

Example 4-1 GraphML Description of a Simple Property Graph

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns">
 <key id="name" for="node" attr.name="name" attr.type="string"/>
 <key id="age" for="node" attr.name="age" attr.type="int"/>
 <key id="type" for="edge" attr.name="type" attr.type="string"/>
 <graph id="PG" edgedefault="directed">
 <node id="1">
 <data key="name">Alice</data>
 <data key="age">31</data>
 </node>
 <node id="2">
 <data key="name">Bob</data>
 <data key="age">27</data>
 </node>
 <edge id="3" source="1" target="2" label="knows">
 <data key="type">friends</data>
 </edge>
 </graph>
</graphml>

4.2.2 GraphSON Data Format
The GraphSON file format is based on JavaScript Object Notation (JSON) for
describing graphs. Example 4-2 shows a GraphSON description of the property graph
shown in Figure 4-1.

See Also:

"GraphSON Reader and Writer Library" at

https://github.com/tinkerpop/blueprints/wiki/GraphSON-
Reader-and-Writer-Library

About Property Graph Data Formats

4-4 User's Guide and Reference

http://graphml.graphdrawing.org/
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library
https://github.com/tinkerpop/blueprints/wiki/GraphSON-Reader-and-Writer-Library

Example 4-2 GraphSON Description of a Simple Property Graph

{
 "graph": {
 "mode":"NORMAL",
 "vertices": [
 {
 "name": "Alice",
 "age": 31,
 "_id": "1",
 "_type": "vertex"
 },
 {
 "name": "Bob",
 "age": 27,
 "_id": "2",
 "_type": "vertex"
 }
],
 "edges": [
 {
 "type": "friends",
 "_id": "3",
 "_type": "edge",
 "_outV": "1",
 "_inV": "2",
 "_label": "knows"
 }
]
 }
}

4.2.3 GML Data Format
The Graph Modeling Language (GML) file format uses ASCII to describe graphs.
Example 4-3 shows a GML description of the property graph shown in Figure 4-1.

See Also:

"GML: A Portable Graph File Format" by Michael Himsolt at

http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/
brandenburg/projekte/gml/gml-technical-report.pdf

Example 4-3 GML Description of a Simple Property Graph

graph [
 comment "Simple property graph"
 directed 1
 IsPlanar 1
 node [
 id 1
 label "1"
 name "Alice"
 age 31
]
 node [
 id 2
 label "2"
 name "Bob"

About Property Graph Data Formats

Using Property Graphs in a Big Data Environment 4-5

http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf
http://www.fim.uni-passau.de/fileadmin/files/lehrstuhl/brandenburg/projekte/gml/gml-technical-report.pdf

 age 27
]
 edge [
 source 1
 target 2
 label "knows"
 type "friends"
]
]

4.2.4 Oracle Flat File Format
The Oracle flat file format exclusively describes property graphs. It is more concise
and provides better data type support than the other file formats. The Oracle flat file
format uses two files for a graph description, one for the vertices and one for edges.
Commas separate the fields of the records.

Example 4-4 shows the Oracle flat files that describe the property graph shown in
Figure 4-1.

See Also:

“Oracle Flat File Format Definition”

Example 4-4 Oracle Flat File Description of a Simple Property Graph

Vertex file:

1,name,1,Alice,,
1,age,2,,31,
2,name,1,Bob,,
2,age,2,,27,

Edge file:

1,1,2,knows,type,1,friends,,

4.3 Getting Started With Property Graphs
To get started with property graphs:

1. The first time you use property graphs, ensure that the software is installed and
operational.

2. Create your Java programs, using the classes provided in the Java API.

See “Using Java APIs for Property Graph Data”.

4.4 Using Java APIs for Property Graph Data
Creating a property graph involves using the Java APIs to create the property graph
and objects in it.

• Overview of the Java APIs

• Parallel Loading of Graph Data

• Opening and Closing a Property Graph Instance

Getting Started With Property Graphs

4-6 User's Guide and Reference

• Creating the Vertices

• Creating the Edges

• Deleting the Vertices and Edges

• Dropping a Property Graph

4.4.1 Overview of the Java APIs
The Java APIs that you can use for property graphs include:

• Oracle Big Data Spatial and Graph Java APIs

• TinkerPop Blueprints Java APIs

• Apache Hadoop Java APIs

• Oracle NoSQL Database Java APIs

• Apache HBase Java APIs

4.4.1.1 Oracle Big Data Spatial and Graph Java APIs

Oracle Big Data Spatial and Graph property graph support provides database-specific
APIs for Apache HBase and Oracle NoSQL Database. The data access layer API
(oracle.pg.*) implements TinkerPop Blueprints APIs, text search, and indexing for
property graphs stored in Oracle NoSQL Database and Apache HBase.

To use the Oracle Big Data Spatial and Graph API, import the classes into your Java
program:

import oracle.pg.nosql.*; // or oracle.pg.hbase.*
import oracle.pgx.config.*;
import oracle.pgx.common.types.*;

Also include TinkerPop Blueprints Java APIs.

See Also:

Oracle Big Data Spatial and Graph Java API Reference

Oracle Big Data Spatial and Graph Java API Reference

4.4.1.2 TinkerPop Blueprints Java APIs

TinkerPop Blueprints supports the property graph data model. The API provides
utilities for manipulating graphs, which you use primarily through the Big Data
Spatial and Graph data access layer Java APIs.

To use the Blueprints APIs, import the classes into your Java program:

import com.tinkerpop.blueprints.Vertex;
import com.tinkerpop.blueprints.Edge;

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-7

See Also:

"Blueprints: A Property Graph Model Interface API" at

http://www.tinkerpop.com/docs/javadocs/blueprints/2.3.0/
index.html

4.4.1.3 Apache Hadoop Java APIs

The Apache Hadoop Java APIs enable you to write your Java code as a MapReduce
program that runs within the Hadoop distributed framework.

To use the Hadoop Java APIs, import the classes into your Java program. For example:

import org.apache.hadoop.conf.Configuration;

See Also:

"Apache Hadoop Main 2.5.0-cdh5.3.2 API" at

http://archive.cloudera.com/cdh5/cdh/5/hadoop/api/

4.4.1.4 Oracle NoSQL Database Java APIs

The Oracle NoSQL Database APIs enable you to create and populate a key-value (KV)
store, and provide interfaces to Hadoop, Hive, and Oracle Database.

To use Oracle NoSQL Database as the graph data store, import the classes into your
Java program. For example:

import oracle.kv.*;
import oracle.kv.table.TableOperation;

See Also:

"Oracle NoSQL Database Java API Reference" at

http://docs.oracle.com/cd/NOSQL/html/javadoc/

4.4.1.5 Apache HBase Java APIs

The Apache HBase APIs enable you to create and manipulate key-value pairs.

To use HBase as the graph data store, import the classes into your Java program. For
example:

import org.apache.hadoop.hbase.*;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.filter.*;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.conf.Configuration;

Using Java APIs for Property Graph Data

4-8 User's Guide and Reference

http://www.tinkerpop.com/docs/javadocs/blueprints/2.3.0/index.html
http://www.tinkerpop.com/docs/javadocs/blueprints/2.3.0/index.html
http://archive.cloudera.com/cdh5/cdh/5/hadoop/api/
http://docs.oracle.com/cd/NOSQL/html/javadoc/

See Also:

"HBase 0.98.6-cdh5.3.2 API" at

http://archive.cloudera.com/cdh5/cdh/5/hbase/apidocs/
index.html?overview-summary.html

4.4.2 Parallel Loading of Graph Data
A Java API is provided for performing parallel loading of graph data.

Given a set of vertex files (or input streams) and a set of edge files (or input streams),
they can be split into multiple chunks and loaded into database in parallel. The
number of chunks is determined by the degree of parallelism (DOP) specified by the
user.

Parallelism is achieved with Splitter threads that split vertex and edge flat files into
multiple chunks and Loader threads that load each chunk into the database using
separate database connections. Java pipes are used to connect Splitter and Loader
threads -- Splitter: PipedOutputStream and Loader: PipedInputStream.

The simplest usage of data loading API is specifying a property graph instance, one
vertex file, one edge file, and a DOP.

The following example of the load process loads graph data stored in a vertices file
and an edges file of the optimized Oracle flat file format, and executes the load with 48
degrees of parallelism.

opgdl = OraclePropertyGraphDataLoader.getInstance();
vfile = "/home/alwu/pg-bda-nosql/demo/connections.opv";
efile = "/home/alwu/pg-bda-nosql/demo/connections.ope";
opgdl.loadData(opg, vfile, efile, 48);

4.4.2.1 Parallel Data Loading Using Partitions

The data loading API allows loading the data into database using multiple partitions.
This API requires the property graph, the vertex file, the edge file, the DOP, the total
number of partitions, and the partition offset (from 0 to total number of partitions - 1).
For example, to load the data using two partitions, the partition offsets should be 0
and 1. That is, there should be two data loading API calls to fully load the graph, and
the only difference between the two API calls is the partition offset (0 and 1).

The following code fragment loads the graph data using 4 partitions. Each call to the
data loader can be processed using a separate Java client, on a single system or from
multiple systems.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

int totalPartitions = 4;
int dop= 32; // degree of parallelism for each client.

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";
SimpleLogBasedDataLoaderListenerImpl dll =
SimpleLogBasedDataLoaderListenerImpl.getInstance(100 /* frequency */,
 true /* Continue on error */);

// Run the data loading using 4 partitions (Each call can be run from a
// separate Java Client)

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-9

http://archive.cloudera.com/cdh5/cdh/5/hbase/apidocs/index.html?overview-summary.html
http://archive.cloudera.com/cdh5/cdh/5/hbase/apidocs/index.html?overview-summary.html

// Partition 1
OraclePropertyGraphDataLoader opgdlP1 = OraclePropertyGraphDataLoader.getInstance();
opgdlP1.loadData(opg, szOPVFile, szOPEFile, dop,
 4 /* Total number of partitions, default 1 */,
 0 /* Partition to load (from 0 to totalPartitions - 1, default 0 */,
 dll);

// Partition 2
OraclePropertyGraphDataLoader opgdlP2 = OraclePropertyGraphDataLoader.getInstance();
opgdlP2.loadData(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,
 1 /* Partition to load (from 0 to totalPartitions - 1, default 0 */, dll);

// Partition 3
OraclePropertyGraphDataLoader opgdlP3 = OraclePropertyGraphDataLoader.getInstance();
opgdlP3.loadData(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,
 2 /* Partition to load (from 0 to totalPartitions - 1, default 0 */, dll);

// Partition 4
OraclePropertyGraphDataLoader opgdlP4 = OraclePropertyGraphDataLoader.getInstance();
opgdlP4.loadData(opg, szOPVFile, szOPEFile, dop, 4 /* Total number of partitions,
default 1 */,
 3 /* Partition to load (from 0 to totalPartitions - 1, default 0 */, dll);

4.4.2.2 Parallel Data Loading Using Fine-Tuning

Data loading APIs also support fine-tuning those lines in the source vertex and edges
files that are to be loaded. You can specify the vertex (or edge) offset line number and
vertex (or edge) maximum line number. Data will be loaded from the offset line
number until the maximum line number. If the maximum line number is -1, the
loading process will scan the data until reaching the end of file.

The following code fragment loads the graph data using fine-tuning.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

int totalPartitions = 4;
int dop= 32; // degree of parallelism for each client.

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";
SimpleLogBasedDataLoaderListenerImpl dll =
SimpleLogBasedDataLoaderListenerImpl.getInstance(100 /* frequency */,
 true /* Continue on error */);

// Run the data loading using fine tuning
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(m_opg, m_szOPVFile, m_szOPEFile,
 m_lVertexOffsetlines /* offset of lines to start loading
 from partition, default 0*/,
 m_lEdgeOffsetlines /* offset of lines to start loading
 from partition, default 0*/,
 m_lVertexMaxlines /* maximum number of lines to start loading
 from partition, default -1 (all lines in partition)*/,
 m_lEdgeMaxlines /* maximun number of lines to start loading
 from partition, default -1 (all lines in partition)*/,
 dop,

Using Java APIs for Property Graph Data

4-10 User's Guide and Reference

 totalPartitions /* Total number of partitions, default 1 */,
 idPartition /* Partition to load (from 0 to totalPartitions - 1,
 default 0 */,
 dll);

4.4.2.3 Parallel Data Loading Using Multiple Files

Oracle Big Data Spatial and Graph also support loading multiple vertex files and
multiple edges files into database. The given multiple vertex files will be split into
DOP chunks and loaded into database in parallel using DOP threads. Similarly, the
multiple edge files will also be split and loaded in parallel.

The following code fragment loads multiple vertex fan and edge files using the
parallel data loading APIs. In the example, two string arrays szOPVFiles and
szOPEFiles are used to hold the input files; Although only one vertex file and one edge
file is used in this example, you can supply multiple vertex files and multiple edge
files in these two arrays.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

String[] szOPVFiles = new String[] {"../../data/connections.opv"};
String[] szOPEFiles = new String[] {"../../data/connections.ope"};

// Clear existing vertices/edges in the property graph
opg.clearRepository();
opg.setQueueSize(100); // 100 elements

// This object will handle parallel data loading over the property graph
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();

opgdl.loadData(opg, szOPVFiles, szOPEFiles, dop);

System.out.println("Total vertices: " + opg.countVertices());
System.out.println("Total edges: " + opg.countEdges());

4.4.2.4 Parallel Retrieval of Graph Data

The parallel property graph query provides a simple Java API to perform parallel
scans on vertices (or edges). Parallel retrieval is an optimized solution taking
advantage of the distribution of the data among splits with the back-end database, so
each split is queried using separate database connections.

Parallel retrieval will produce an array where each element holds all the vertices (or
edges) from a specific split. The subset of shards queried will be separated by the
given start split ID and the size of the connections array provided. This way, the
subset will consider splits in the range of [start, start - 1 + size of connections array].
Note that an integer ID (in the range of [0, N - 1]) is assigned to all the splits in the
vertex table with N splits.

The following code loads a property graph using Apache HBase, opens an array of
connections, and executes a parallel query to retrieve all vertices and edges using the
opened connections. The number of calls to the getVerticesPartitioned
(getEdgesPartitioned) method is controlled by the total number of splits and the
number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-11

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create connections used in parallel query
HConnection hConns= new HConnection[dop];
for (int i = 0; i < dop; i++) {
Configuration conf_new =
HBaseConfiguration.create(opg.getConfiguration());
hConns[i] = HConnectionManager.createConnection(conf_new);
}

long lCountV = 0;
// Iterate over all the vertices’ splits to count all the vertices
for (int split = 0; split < opg.getVertexTableSplits();
 split += dop) {
Iterable<Vertex>[] iterables
 = opg.getVerticesPartitioned(hConns /* Connection array */,
 true /* skip store to cache */,
 split /* starting split */);
lCountV += consumeIterables(iterables); /* consume iterables using
 threads */
}

// Count all vertices
System.out.println("Vertices found using parallel query: " + lCountV);

long lCountE = 0;
// Iterate over all the edges’ splits to count all the edges
for (int split = 0; split < opg.getEdgeTableSplits();
 split += dop) {
Iterable<Edge>[] iterables
 = opg.getEdgesPartitioned(hConns /* Connection array */,
 true /* skip store to cache */,
 split /* starting split */);
lCountE += consumeIterables(iterables); /* consume iterables using
 threads */
}

// Count all edges
System.out.println("Edges found using parallel query: " + lCountE);

// Close the connections to the database after completed
for (int idx = 0; idx < conns.length; idx++) {
conns[idx].close();
}

4.4.2.5 Using an Element Filter Callback for Subgraph Extraction

Oracle Big Data Spatial and Graph provides support for an easy subgraph extraction
using user-defined element filter callbacks. An element filter callback defines a set of
conditions that a vertex (or an edge) must meet in order to keep it in the subgraph.
Users can define their own element filtering by implementing the
VertexFilterCallback and EdgeFilterCallback API interfaces.

Using Java APIs for Property Graph Data

4-12 User's Guide and Reference

The following code fragment implements a VertexFilterCallback that validates
if a vertex does not have a political role and its origin is the United States.

/**
* VertexFilterCallback to retrieve a vertex from the United States
* that does not have a political role
*/
private static class NonPoliticianFilterCallback
implements VertexFilterCallback
{
@Override
public boolean keepVertex(OracleVertexBase vertex)
{
String country = vertex.getProperty("country");
String role = vertex.getProperty("role");

if (country != null && country.equals("United States")) {
if (role == null || !role.toLowerCase().contains("political")) {
return true;
}
}

return false;
}

public static NonPoliticianFilterCallback getInstance()
{
return new NonPoliticianFilterCallback();
}
}

The following code fragment implements an EdgeFilterCallback that uses the
VertexFilterCallback to keep only edges connected to the given input vertex,
and whose connections are not politicians and come from the United States.

/**
 * EdgeFilterCallback to retrieve all edges connected to an input
 * vertex with "collaborates" label, and whose vertex is from the
 * United States with a role different than political
*/
private static class CollaboratorsFilterCallback
implements EdgeFilterCallback
{
private VertexFilterCallback m_vfc;
private Vertex m_startV;

public CollaboratorsFilterCallback(VertexFilterCallback vfc,
 Vertex v)
{
m_vfc = vfc;
m_startV = v;
}

@Override
public boolean keepEdge(OracleEdgeBase edge)
{
if ("collaborates".equals(edge.getLabel())) {
if (edge.getVertex(Direction.IN).equals(m_startV) &&
m_vfc.keepVertex((OracleVertex)
edge.getVertex(Direction.OUT))) {
return true;

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-13

}
else if (edge.getVertex(Direction.OUT).equals(m_startV) &&
 m_vfc.keepVertex((OracleVertex)
edge.getVertex(Direction.IN))) {
return true;
}
}

return false;
}

public static CollaboratorsFilterCallback
getInstance(VertexFilterCallback vfc, Vertex v)
{
return new CollaboratorsFilterCallback(vfc, v);
}

}

Using the filter callbacks previously defined, the following code fragment loads a
property graph, creates an instance of the filter callbacks and later gets all of Barack
Obama’s collaborators who are not politicians and come from the United States.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// VertexFilterCallback to retrieve all people from the United States // who are not
politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getInstance();

// Initial vertex: Barack Obama
Vertex v = opg.getVertices("name", "Barack Obama").iterator().next();

// EdgeFilterCallback to retrieve all collaborators of Barack Obama
// from the United States who are not politicians
CollaboratorsFilterCallback cefc = CollaboratorsFilterCallback.getInstance(npvfc, v);

Iterable<<Edge> obamaCollabs = opg.getEdges((String[])null /* Match any
of the properties */,
cefc /* Match the
EdgeFilterCallback */
);
Iterator<<Edge> iter = obamaCollabs.iterator();

System.out.println("\n\n--------Collaborators of Barack Obama from " +
 " the US and non-politician\n\n");
long countV = 0;
while (iter.hasNext()) {
Edge edge = iter.next(); // get the edge
// check if obama is the IN vertex
if (edge.getVertex(Direction.IN).equals(v)) {

Using Java APIs for Property Graph Data

4-14 User's Guide and Reference

 System.out.println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
 edge.getId() + ")"); // get out vertex
}
else {
System.out.println(edge.getVertex(Direction.IN)+ "(Edge ID: " +
 edge.getId() + ")"); // get in vertex
}

countV++;
}

By default, all reading operations such as get all vertices, get all edges (and parallel
approaches) will use the filter callbacks associated with the property graph using the
methods opg.setVertexFilterCallback(vfc) and
opg.setEdgeFilterCallback(efc). If there is no filter callback set, then all the
vertices (or edges) and edges will be retrieved.

The following code fragment uses the default edge filter callback set on the property
graph to retrieve the edges.

// VertexFilterCallback to retrieve all people from the United States // who are not
politicians
NonPoliticianFilterCallback npvfc = NonPoliticianFilterCallback.getInstance();

// Initial vertex: Barack Obama
Vertex v = opg.getVertices("name", "Barack Obama").iterator().next();

// EdgeFilterCallback to retrieve all collaborators of Barack Obama
// from the United States who are not politicians
CollaboratorsFilterCallback cefc = CollaboratorsFilterCallback.getInstance(npvfc, v);

opg.setEdgeFilterCallback(cefc);

Iterable<Edge> obamaCollabs = opg.getEdges();
Iterator<Edge> iter = obamaCollabs.iterator();

System.out.println("\n\n--------Collaborators of Barack Obama from " +
 " the US and non-politician\n\n");
long countV = 0;
while (iter.hasNext()) {
Edge edge = iter.next(); // get the edge
// check if obama is the IN vertex
if (edge.getVertex(Direction.IN).equals(v)) {
 System.out.println(edge.getVertex(Direction.OUT) + "(Edge ID: " +
 edge.getId() + ")"); // get out vertex
}
else {
System.out.println(edge.getVertex(Direction.IN)+ "(Edge ID: " +
 edge.getId() + ")"); // get in vertex
}

countV++;
}

4.4.2.6 Using Optimization Flags on Reads over Property Graph Data

Oracle Big Data Spatial and Graph provides support for optimization flags to improve
graph iteration performance. Optimization flags allow processing vertices (or edges)
as objects with none or minimal information, such as ID, label, and/or incoming/
outgoing vertices. This way, the time required to process each vertex (or edge) during
iteration is reduced.

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-15

The following table shows the optimization flags available when processing vertices
(or edges) in a property graph.

Optimization Flag Description

DO_NOT_CREATE_OB
JECT

Use a predefined constant object when processing vertices or
edges.

JUST_EDGE_ID Construct edge objects with ID only when processing edges.

JUST_LABEL_EDGE_I
D

Construct edge objects with ID and label only when processing
edges.

JUST_LABEL_VERTEX
_EDGE_ID

Construct edge objects with ID, label, and in/out vertex IDs only
when processing edges

JUST_VERTEX_EDGE_
ID

Construct edge objects with just ID and in/out vertex IDs when
processing edges.

JUST_VERTEX_ID Construct vertex objects with ID only when processing vertices.

The following code fragment uses a set of optimization flags to retrieve only all the
IDs from the vertices and edges in the property graph. The objects retrieved by
reading all vertices and edges will include only the IDs and no Key/Value properties
or additional information.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Optimization flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ID;

// Optimization flag to retrieve only edges IDs
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

// Print all vertices
Iterator<Vertex> vertices =
opg.getVertices((String[])null /* Match any of the
properties */,
null /* Match the VertexFilterCallback */,
optFlagVertex /* optimization flag */
).iterator();

System.out.println("----- Vertices IDs----");
long vCount = 0;
while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System.out.println((Long) v.getId());
vCount++;
}
System.out.println("Vertices found: " + vCount);

Using Java APIs for Property Graph Data

4-16 User's Guide and Reference

// Print all edges
Iterator<Edge> edges
opg.getEdges((String[])null /* Match any of the
properties */,
null /* Match the EdgeFilterCallback */,
optFlagEdge /* optimization flag */
).iterator();

System.out.println("----- Edges ----");
long eCount = 0;
while (edges.hasNext()) {
Edge e = edges.next();
System.out.println((Long) e.getId());
eCount++;
}
System.out.println("Edges found: " + eCount);

By default, all reading operations such as get all vertices, get all edges (and parallel
approaches) will use the optimization flag associated with the property graph using
the method opg.setDefaultVertexOptFlag(optFlagVertex) and
opg.setDefaultEdgeOptFlag(optFlagEdge). If the optimization flags for
processing vertices and edges are not defined, then all the information about the
vertices and edges will be retrieved.

The following code fragment uses the default optimization flags set on the property
graph to retrieve only all the IDs from its vertices and edges.

// Optimization flag to retrieve only vertices IDs
OptimizationFlag optFlagVertex = OptimizationFlag.JUST_VERTEX_ID;

// Optimization flag to retrieve only edges IDs
OptimizationFlag optFlagEdge = OptimizationFlag.JUST_EDGE_ID;

opg.setDefaultVertexOptFlag(optFlagVertex);
opg.setDefaultEdgeOptFlag(optFlagEdge);

Iterator<Vertex> vertices = opg.getVertices().iterator();
System.out.println("----- Vertices IDs----");
long vCount = 0;
while (vertices.hasNext()) {
OracleVertex v = vertices.next();
System.out.println((Long) v.getId());
vCount++;
}
System.out.println("Vertices found: " + vCount);

// Print all edges
Iterator<Edge> edges = opg.getEdges().iterator();
System.out.println("----- Edges ----");
long eCount = 0;
while (edges.hasNext()) {
Edge e = edges.next();
System.out.println((Long) e.getId());
eCount++;
}
System.out.println("Edges found: " + eCount);

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-17

4.4.2.7 Adding and Removing Attributes of a Property Graph Subgraph

Oracle Big Data Spatial and Graph supports updating attributes (key/value pairs) to a
subgraph of vertices and/or edges by using a user-customized operation callback. An
operation callback defines a set of conditions that a vertex (or an edge) must meet in
order to update it (either add or remove the given attribute and value).

You can define your own attribute operations by implementing the
VertexOpCallback and EdgeOpCallback API interfaces. You must override the
needOp method, which defines the conditions to be satisfied by the vertices (or edges)
to be included in the update operation, as well as the getAttributeKeyName and
getAttributeKeyValue methods, which return the key name and value,
respectively, to be used when updating the elements.

The following code fragment implements a VertexOpCallback that operates over
the obamaCollaborator attribute associated only with Barack Obama collaborators.
The value of this property is specified based on the role of the collaborators.

private static class CollaboratorsVertexOpCallback
implements VertexOpCallback
{
private OracleVertexBase m_obama;
private List<Vertex> m_obamaCollaborators;

public CollaboratorsVertexOpCallback(OraclePropertyGraph opg)
{
// Get a list of Barack Obama'sCollaborators
m_obama = (OracleVertexBase) opg.getVertices("name",
 "Barack Obama")
.iterator().next();

Iterable<Vertex> iter = m_obama.getVertices(Direction.BOTH,
"collaborates");
m_obamaCollaborators = OraclePropertyGraphUtils.listify(iter);
}

public static CollaboratorsVertexOpCallback
getInstance(OraclePropertyGraph opg)
{
return new CollaboratorsVertexOpCallback(opg);
}

/**
 * Add attribute if and only if the vertex is a collaborator of Barack
 * Obama
*/
@Override
public boolean needOp(OracleVertexBase v)
{
return m_obamaCollaborators != null &&
 m_obamaCollaborators.contains(v);
}

@Override
public String getAttributeKeyName(OracleVertexBase v)
{
return "obamaCollaborator";
}

/**

Using Java APIs for Property Graph Data

4-18 User's Guide and Reference

 * Define the property's value based on the vertex role
 */
@Override
public Object getAttributeKeyValue(OracleVertexBase v)
{
String role = v.getProperty("role");
role = role.toLowerCase();
if (role.contains("political")) {
return "political";
}
else if (role.contains("actor") || role.contains("singer") ||
 role.contains("actress") || role.contains("writer") ||
 role.contains("producer") || role.contains("director")) {
return "arts";
}
else if (role.contains("player")) {
return "sports";
}
else if (role.contains("journalist")) {
return "journalism";
}
else if (role.contains("business") || role.contains("economist")) {
return "business";
}
else if (role.contains("philanthropist")) {
return "philanthropy";
}
return " ";
}
}

The following code fragment implements an EdgeOpCallback that operates over the
obamaFeud attribute associated only with Barack Obama feuds. The value of this
property is specified based on the role of the collaborators.

private static class FeudsEdgeOpCallback
implements EdgeOpCallback
{
private OracleVertexBase m_obama;
private List<Edge> m_obamaFeuds;

public FeudsEdgeOpCallback(OraclePropertyGraph opg)
{
// Get a list of Barack Obama's feuds
m_obama = (OracleVertexBase) opg.getVertices("name",
 "Barack Obama")
.iterator().next();

Iterable<Vertex> iter = m_obama.getVertices(Direction.BOTH,
"feuds");
m_obamaFeuds = OraclePropertyGraphUtils.listify(iter);
}

public static FeudsEdgeOpCallback getInstance(OraclePropertyGraph opg)
{
return new FeudsEdgeOpCallback(opg);
}

/**
 * Add attribute if and only if the edge is in the list of Barack Obama's
 * feuds

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-19

*/
@Override
public boolean needOp(OracleEdgeBase e)
{
return m_obamaFeuds != null && m_obamaFeuds.contains(e);
}

@Override
public String getAttributeKeyName(OracleEdgeBase e)
{
return "obamaFeud";
}

/**
 * Define the property's value based on the in/out vertex role
 */
@Override
public Object getAttributeKeyValue(OracleEdgeBase e)
{
OracleVertexBase v = (OracleVertexBase) e.getVertex(Direction.IN);
if (m_obama.equals(v)) {
v = (OracleVertexBase) e.getVertex(Direction.OUT);
}
String role = v.getProperty("role");
role = role.toLowerCase();

if (role.contains("political")) {
return "political";
}
else if (role.contains("actor") || role.contains("singer") ||
 role.contains("actress") || role.contains("writer") ||
 role.contains("producer") || role.contains("director")) {
return "arts";
}
else if (role.contains("journalist")) {
return "journalism";
}
else if (role.contains("player")) {
return "sports";
}
else if (role.contains("business") || role.contains("economist")) {
return "business";
}
else if (role.contains("philanthropist")) {
return "philanthropy";
}
return " ";
}
}

Using the operations callbacks defined previously, the following code fragment loads
a property graph, creates an instance of the operation callbacks, and later adds the
attributes into the pertinent vertices and edges using the
addAttributeToAllVertices and addAttributeToAllEdges methods in
OraclePropertyGraph.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

Using Java APIs for Property Graph Data

4-20 User's Guide and Reference

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create the vertex operation callback
CollaboratorsVertexOpCallback cvoc = CollaboratorsVertexOpCallback.getInstance(opg);

// Add attribute to all people collaborating with Obama based on their role
opg.addAttributeToAllVertices(cvoc, true /** Skip store to Cache */, dop);

// Look up for all collaborators of Obama
Iterable<Vertex> collaborators = opg.getVertices("obamaCollaborator", "political");
System.out.println("Political collaborators of Barack Obama " +
getVerticesAsString(collaborators));

collaborators = opg.getVertices("obamaCollaborator", "business");
System.out.println("Business collaborators of Barack Obama " +
getVerticesAsString(collaborators));

// Add an attribute to all people having a feud with Barack Obama to set
// the type of relation they have
FeudsEdgeOpCallback feoc = FeudsEdgeOpCallback.getInstance(opg);
opg.addAttributeToAllEdges(feoc, true /** Skip store to Cache */, dop);

// Look up for all feuds of Obama
Iterable<Edge> feuds = opg.getEdges("obamaFeud", "political");
System.out.println("\n\nPolitical feuds of Barack Obama " + getEdgesAsString(feuds));

feuds = opg.getEdges("obamaFeud", "business");
System.out.println("Business feuds of Barack Obama " +
getEdgesAsString(feuds));

The following code fragment defines an implementation of VertexOpCallback that
can be used to remove vertices having value philanthropy for attribute
obamaCollaborator, then call the API removeAttributeFromAllVertices; It
also defines an implementation of EdgeOpCallback that can be used to remove
edges having value business for attribute obamaFeud, then call the API
removeAttributeFromAllEdges.

System.out.println("\n\nRemove 'obamaCollaborator' property from all the" +
 "philanthropy collaborators");
PhilanthropyCollaboratorsVertexOpCallback pvoc =
philanthropyCollaboratorsVertexOpCallback.getInstance();

opg.removeAttributeFromAllVertices(pvoc);

System.out.println("\n\nRemove 'obamaFeud' property from all the" + "business
feuds");
BusinessFeudsEdgeOpCallback beoc = BusinessFeudsEdgeOpCallback.getInstance();

opg.removeAttributeFromAllEdges(beoc);

/**
 * Implementation of a EdgeOpCallback to remove the "obamaCollaborators"
 * property from all people collaborating with Barack Obama that have a
 * philanthropy role
 */

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-21

private static class PhilanthropyCollaboratorsVertexOpCallback implements
VertexOpCallback
{
 public static PhilanthropyCollaboratorsVertexOpCallback getInstance()
 {
 return new PhilanthropyCollaboratorsVertexOpCallback();
 }

 /**
 * Remove attribute if and only if the property value for
 * obamaCollaborator is Philanthropy
 */
 @Override
 public boolean needOp(OracleVertexBase v)
 {
 String type = v.getProperty("obamaCollaborator");
 return type != null && type.equals("philanthropy");
 }

 @Override
 public String getAttributeKeyName(OracleVertexBase v)
 {
 return "obamaCollaborator";
 }

 /**
 * Define the property's value. In this case can be empty
 */
 @Override
 public Object getAttributeKeyValue(OracleVertexBase v)
 {
 return " ";
 }
}

/**
 * Implementation of a EdgeOpCallback to remove the "obamaFeud" property
 * from all connections in a feud with Barack Obama that have a business role
 */
private static class BusinessFeudsEdgeOpCallback implements EdgeOpCallback
{
 public static BusinessFeudsEdgeOpCallback getInstance()
 {
 return new BusinessFeudsEdgeOpCallback();
 }

 /**
 * Remove attribute if and only if the property value for obamaFeud is
 * business
 */
 @Override
 public boolean needOp(OracleEdgeBase e)
 {
 String type = e.getProperty("obamaFeud");
 return type != null && type.equals("business");
 }

 @Override
 public String getAttributeKeyName(OracleEdgeBase e)
 {
 return "obamaFeud";

Using Java APIs for Property Graph Data

4-22 User's Guide and Reference

 }

 /**
 * Define the property's value. In this case can be empty
 */
 @Override
 public Object getAttributeKeyValue(OracleEdgeBase e)
 {
 return " ";
 }
}

4.4.2.8 Getting Property Graph Metadata

You can get graph metadata and statistics, such as all graph names in the database; for
each graph, getting the minimum/maximum vertex ID, the minimum/maximum
edge ID, vertex property names, edge property names, number of splits in graph
vertex, and the edge table that supports parallel table scans.

The following code fragment gets the metadata and statistics of the existing property
graphs stored in the back-end database (either Oracle NoSQL Database or Apache
HBase). The arguments required vary for each database.

// Get all graph names in the database
List<String> graphNames = OraclePropertyGraphUtils.getGraphNames(dbArgs);

for (String graphName : graphNames) {
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
graphName);

System.err.println("\n Graph name: " + graphName);
System.err.println(" Total vertices: " +
 opg.countVertices(dop));

System.err.println(" Minimum Vertex ID: " +
 opg.getMinVertexID(dop));
System.err.println(" Maximum Vertex ID: " +
 opg.getMaxVertexID(dop));

Set<String> propertyNamesV = new HashSet<String>();
opg.getVertexPropertyNames(dop, 0 /* timeout,0 no timeout */,
 propertyNamesV);

System.err.println(" Vertices property names: " +
getPropertyNamesAsString(propertyNamesV));

System.err.println("\n\n Total edges: " + opg.countEdges(dop));
System.err.println(" Minimum Edge ID: " + opg.getMinEdgeID(dop));
System.err.println(" Maximum Edge ID: " + opg.getMaxEdgeID(dop));

Set<String> propertyNamesE = new HashSet<String>();
opg.getEdgePropertyNames(dop, 0 /* timeout,0 no timeout */,
 propertyNamesE);

System.err.println(" Edge property names: " +
getPropertyNamesAsString(propertyNamesE));

System.err.println("\n\n Table Information: ");
System.err.println("Vertex table number of splits: " +
 (opg.getVertexTableSplits()));

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-23

System.err.println("Edge table number of splits: " +
 (opg.getEdgeTableSplits()));

4.4.3 Opening and Closing a Property Graph Instance
When describing a property graph, use these Oracle Property Graph classes to open
and close the property graph instance properly:

• OraclePropertyGraph.getInstance: Opens an instance of an Oracle property
graph. This method has two parameters, the connection information and the graph
name. The format of the connection information depends on whether you use
HBase or Oracle NoSQL Database as the backend database.

• OraclePropertyGraph.clearRepository: Removes all vertices and edges
from the property graph instance.

• OraclePropertyGraph.shutdown: Closes the graph instance.

In addition, you must use the appropriate classes from the Oracle NoSQL Database or
HBase APIs.

• Using Oracle NoSQL Database

• Using Apache HBase

4.4.3.1 Using Oracle NoSQL Database

For Oracle NoSQL Database, the OraclePropertyGraph.getInstance method
uses the KV store name, host computer name, and port number for the connection:

String kvHostPort = "cluster02:5000";
String kvStoreName = "kvstore";
String kvGraphName = "my_graph";

// Use NoSQL Java API
KVStoreConfig kvconfig = new KVStoreConfig(kvStoreName, kvHostPort);

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(kvconfig, kvGraphName);
opg.clearRepository();
// .
// . Graph description
// .
// Close the graph instance
opg.shutdown();

If in-memory analytical functions are required for your application, then it is
recommended that you use GraphConfigBuilder to create a graph config for
Oracle NoSQL Database, and instantiates OraclePropertyGraph with the config
as an argument.

As an example, the following code snippet constructs a graph config, gets an
OraclePropertyGraph instance, loads some data into that graph, and gets an in-
memory analyst.

 import oracle.pgx.config.*;
 import oracle.pgx.api.*;
 import oracle.pgx.common.types.*;

 ...

 String[] hhosts = new String[1];

Using Java APIs for Property Graph Data

4-24 User's Guide and Reference

 hhosts[0] = "my_host_name:5000"; // need customization
 String szStoreName = "kvstore"; // need customization
 String szGraphName = "my_graph";
 int dop = 8;

 PgNosqlGraphConfig cfg = GraphConfigBuilder.forPropertyGraphNosql()
 .setName(szGraphName)
 .setHosts(Arrays.asList(hhosts))
 .setStoreName(szStoreName)
 .addEdgeProperty("lbl",
PropertyType.STRING, "lbl")
 .addEdgeProperty("weight",
PropertyType.DOUBLE, "1000000")
 .build();

 OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);

 String szOPVFile = "../../data/connections.opv";
 String szOPEFile = "../../data/connections.ope";

 // perform a parallel data load
 OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
 opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

 ...
 PgxSession session = Pgx.createSession("session-id-1");
 PgxGraph g = session.readGraphWithProperties(cfg);

 Analyst analyst = session.createAnalyst();
 ...

4.4.3.2 Using Apache HBase

For Apache HBase, the OraclePropertyGraph.getInstance method uses the
Hadoop nodes and the Apache HBase port number for the connection:

String hbQuorum = "bda01node01.example.com, bda01node02.example.com,
bda01node03.example.com";
String hbClientPort = "2181"
String hbGraphName = "my_graph";

// Use HBase Java APIs
Configuration conf = HBaseConfiguration.create();
 conf.set("hbase.zookeeper.quorum", hbQuorum);
 conf.set("hbase.zookeper.property.clientPort", hbClientPort);
HConnection conn = HConnectionManager.createConnection(conf);

// Open the property graph
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(conf, conn, hbGraphName);
opg.clearRepository();
// .
// . Graph description
// .
// Close the graph instance
opg.shutdown();
// Close the HBase connection
conn.close();

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-25

If in-memory analytical functions are required for your application, then it is
recommended that you use GraphConfigBuilder to create a graph config, and
instantiates OraclePropertyGraph with the config as an argument.

As an example, the following code snippet sets the configuration for in memory
analytics, constructs a graph config for Apache HBase, instantiates an
OraclePropertyGraph instance, gets an in-memory analyst, and counts the number
of triangles in the graph.

 confPgx = new HashMap<PgxConfig.Field, Object>();
 confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
 confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop + 2);
 confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, 8); // <= # of physical cores
 confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
 confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0);// no timeout set
 confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0); // no timeout set
 ServerInstance instance = Pgx.getInstance()
 instance.startEngine(confPgx)

int iClientPort = Integer.parseInt(szClientPort);
int iSplitsPerRegion = 2;

PgHbaseGraphConfig cfg = GraphConfigBuilder.forPropertyGraphHbase()
 .setName(hbGraphName)
 .setZkQuorum(hbQuorum)
 .setZkClientPort(iClientPort)
 .setZkSessionTimeout(60000)
 .setMaxNumConnections(dop)
 .setSplitsPerRegion(splitsPerRegion)
 .addEdgeProperty("lbl", PropertyType.STRING, "lbl")
 .addEdgeProperty("weight", PropertyType.DOUBLE, "1000000")
 .build();

PgxSession session = Pgx.createSession("session-id-1");
PgxGraph g = session.readGraphWithProperties(cfg);
Analyst analyst = session.createAnalyst();

long triangles = analyst.countTriangles(false).get();

4.4.4 Creating the Vertices
To create a vertex, use these Oracle Property Graph methods:

• OraclePropertyGraph.addVertex: Adds a vertex instance to a graph.

• OracleVertex.setProperty: Assigns a key-value property to a vertex.

• OraclePropertyGraph.commit: Saves all changes to the property graph
instance.

The following code fragment creates two vertices named V1 and V2, with properties
for age, name, weight, height, and sex in the opg property graph instance. The v1
properties set the data types explicitly.

// Create vertex v1 and assign it properties as key-value pairs
Vertex v1 = opg.addVertex(1l);
 v1.setProperty("age", Integer.valueOf(31));
 v1.setProperty("name", "Alice");
 v1.setProperty("weight", Float.valueOf(135.0f));
 v1.setProperty("height", Double.valueOf(64.5d));
 v1.setProperty("female", Boolean.TRUE);

Using Java APIs for Property Graph Data

4-26 User's Guide and Reference

Vertex v2 = opg.addVertex(2l);
 v2.setProperty("age", 27);
 v2.setProperty("name", "Bob");
 v2.setProperty("weight", Float.valueOf(156.0f));
 v2.setProperty("height", Double.valueOf(69.5d));
 v2.setProperty("female", Boolean.FALSE);

4.4.5 Creating the Edges
To create an edge, use these Oracle Property Graph methods:

• OraclePropertyGraph.addEdge: Adds an edge instance to a graph.

• OracleEdge.setProperty: Assigns a key-value property to an edge.

The following code fragment creates two vertices (v1 and v2) and one edge (e1).

// Add vertices v1 and v2
Vertex a = opg.addVertex(1l);
v1.setProperty("name", "Alice");
v1.setProperty("age", 31);

Vertex v2 = opg.addVertex(2l);
v2.setProperty("name", "Bob");
v2.setProperty("age", 27);

// Add edge e1
Edge e1 = opg.addEdge(1l, v1, v2, "knows");
e1.setProperty("type", "friends");

4.4.6 Deleting the Vertices and Edges
You can remove vertex and edge instances individually, or all of them simultaneously.
Use these methods:

• OraclePropertyGraph.removeEdge: Removes the specified edge from the
graph.

• OraclePropertyGraph.removeVertex: Removes the specified vertex from the
graph.

• OraclePropertyGraph.clearRepository: Removes all vertices and edges
from the property graph instance.

The following code fragment removes edge e1 and vertex v1 from the graph instance.
The adjacent edges will also be deleted from the graph when removing a vertex. This
is because every edge must have an beginning and ending vertex. After removing the
beginning or ending vertex, the edge is no longer a valid edge.

// Remove edge e1
opg.removeEdge(e1);

// Remove vertex v1
opg.removeVertex(v1);

The OraclePropertyGraph.clearRepository method can be used to remove all
contents from an OraclePropertyGraph instance. However, use it with care
because this action cannot be reversed.

Using Java APIs for Property Graph Data

Using Property Graphs in a Big Data Environment 4-27

4.4.7 Reading a Graph from a Database into the Embedded In-Memory Analyst
You can read a graph from Apache HBase into the embedded in-memory analyst, as
shown in the following example. Some notes:

• A correct java.io.tmpdir setting is required.

• dop + 2 is a workaround for a performance issue before Release 1.1.2. Effective
with Release 1.1.2, you can instead specify a dop value directly in the configuration
settings.

int dop = 8; // need customization
Map<PgxConfig.Field, Object> confPgx = new HashMap<PgxConfig.Field, Object>();
confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop + 2); // use dop directly with
release 1.1.2 or newer
confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, dop); // <= # of physical cores
confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0); // no timeout set
confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0); // no timeout set

PgHbaseGraphConfig cfg = GraphConfigBuilder.forPropertyGraphHbase()
 .setName("mygraph")
 .setZkQuorum("localhost") // quorum, need customization
 .setZkClientPort(2181)
 .addNodeProperty("name", PropertyType.STRING,
"default_name")
 .build();

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);
ServerInstance localInstance = Pgx.getInstance();
localInstance.startEngine(confPgx);
PgxSession session = localInstance.createSession("session-id-1"); // Put your
session description here.

Analyst analyst = session.createAnalyst();

// The following call will trigger a read of graph data from the database
PgxGraph pgxGraph = session.readGraphWithProperties(opg.getConfig());

long triangles = analyst.countTriangles(pgxGraph, false);
System.out.println("triangles " + triangles);

// Remove edge e1
opg.removeEdge(e1);

// Remove vertex v1
opg.removeVertex(v1);

4.4.8 Dropping a Property Graph
To drop a property graph from the database, use the
OraclePropertyGraphUtils.dropPropertyGraph method. This method has
two parameters, the connection information and the graph name.

The format of the connection information depends on whether you use HBase or
Oracle NoSQL Database as the backend database. It is the same as the connection
information you provide to OraclePropertyGraph.getInstance.

Using Java APIs for Property Graph Data

4-28 User's Guide and Reference

• Using Oracle NoSQL Database

• Using Apache HBase

4.4.8.1 Using Oracle NoSQL Database

For Oracle NoSQL Database, the
OraclePropertyGraphUtils.dropPropertyGraph method uses the KV store
name, host computer name, and port number for the connection. This code fragment
deletes a graph named my_graph from Oracle NoSQL Database.

String kvHostPort = "cluster02:5000";
String kvStoreName = "kvstore";
String kvGraphName = "my_graph";

// Use NoSQL Java API
KVStoreConfig kvconfig = new KVStoreConfig(kvStoreName, kvHostPort);

// Drop the graph
OraclePropertyGraphUtils.dropPropertyGraph(kvconfig, kvGraphName);

4.4.8.2 Using Apache HBase

For Apache HBase, the OraclePropertyGraphUtils.dropPropertyGraph
method uses the Hadoop nodes and the Apache HBase port number for the
connection. This code fragment deletes a graph named my_graph from Apache
HBase.

String hbQuorum = "bda01node01.example.com, bda01node02.example.com,
bda01node03.example.com";
String hbClientPort = "2181"
String hbGraphName = "my_graph";

// Use HBase Java APIs
Configuration conf = HBaseConfiguration.create();
 conf.set("hbase.zookeeper.quorum", hbQuorum);
 conf.set("hbase.zookeper.property.clientPort", hbClientPort);
HConnection conn = HConnectionManager.createConnection(conf);

// Drop the graph
OraclePropertyGraphUtils.dropPropertyGraph(conf, hbGraphName);

4.5 Managing Text Indexing for Property Graph Data
Indexes in Oracle Big Data Spatial and Graph allow fast retrieval of elements by a
particular key/value or key/text pair. These indexes are created based on an element
type (vertices or edges), a set of keys (and values), and an index type.

Two types of indexing structures are supported by Oracle Big Data Spatial and Graph:
manual and automatic.

• Automatic text indexes provide automatic indexing of vertices or edges by a set of
property keys. Their main purpose is to enhance query performance on vertices
and edges based on particular key/value pairs.

• Manual text indexes enable you to define multiple indexes over a designated set of
vertices and edges of a property graph. You must specify what graph elements go
into the index.

Oracle Big Data Spatial and Graph provides APIs to create manual and automatic text
indexes over property graphs for Oracle NoSQL Database and Apache HBase. Indexes

Managing Text Indexing for Property Graph Data

Using Property Graphs in a Big Data Environment 4-29

are managed using the available search engines, Apache Lucene and SolrCloud. The
rest of this section focuses on how to create text indexes using the property graph
capabilities of the Data Access Layer.

• Using Automatic Indexes with the Apache Lucene Search Engine

• Using Manual Indexes with the SolrCloud Search Engine

• Handling Data Types

• Uploading a Collection's SolrCloud Configuration to Zookeeper

• Updating Configuration Settings on Text Indexes for Property Graph Data

• Using Parallel Query on Text Indexes for Property Graph Data

4.5.1 Using Automatic Indexes with the Apache Lucene Search Engine
The supplied examples ExampleNoSQL6 and ExampleHBase6 create a property graph
from an input file, create an automatic text index on vertices, and execute some text
search queries using Apache Lucene.

The following code fragment creates an automatic index over an existing property
graph's vertices with these property keys: name, role, religion, and country. The
automatic text index will be stored under four subdirectories under the /home/data/
text-index directory. Apache Lucene data types handling is enabled. This example
use a DOP (parallelism) of 4 for re-indexing tasks.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index using Apache Lucene engine.
// Specify Index Directory parameters (number of directories,
// number of connections to database, batch size, commit size,
// enable datatypes, location)
OracleIndexParameters indexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, true,
 "/home/data/text-index ");
opg.setDefaultIndexParameters(indexParams);

// specify indexed keys
String[] indexedKeys = new String[4];
indexedKeys[0] = "name";
indexedKeys[1] = "role";
indexedKeys[2] = "religion";
indexedKeys[3] = "country";

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class);

Managing Text Indexing for Property Graph Data

4-30 User's Guide and Reference

By default, indexes are configured based on the OracleIndexParameters
associated with the property graph using the method
opg.setDefaultIndexParameters(indexParams).

Indexes can also be created by specifying a different set of parameters. This is shown
in the following code snippet.

// Create an OracleIndexParameters object to get Index configuration (search engine,
etc).
OracleIndexParameters indexParams = OracleIndexParameters.buildFS(args)

// Create auto indexing on above properties for all vertices
opg.createKeyIndex("name", Vertex.class, indexParams.getParameters());

The code fragment in the next example executes a query over all vertices to find all
matching vertices with the key/value pair name:Barack Obama. This operation will
execute a lookup into the text index.

Additionally, wildcard searches are supported by specifying the parameter
useWildCards in the getVertices API call. Wildcard search is only supported
when automatic indexes are enabled for the specified property key. For details on text
search syntax using Apache Lucene, see https://lucene.apache.org/core/
2_9_4/queryparsersyntax.html.

// Find all vertices with name Barack Obama.
 Iterator<Vertices> vertices = opg.getVertices("name", "Barack Obama").iterator();
 System.out.println("----- Vertices with name Barack Obama -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

 // Find all vertices with name including keyword "Obama"
 // Wildcard searching is supported.
 boolean useWildcard = true;
 Iterator<Vertices> vertices = opg.getVertices("name", "*Obama*").iterator();
 System.out.println("----- Vertices with name *Obama* -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

The preceding code example produces output like the following:

----- Vertices with name Barack Obama-----
Vertex ID 1 {name:str:Barack Obama, role:str:political authority, occupation:str:
44th president of United States of America, country:str:United States, political
party:str:Democratic, religion:str:Christianity}
Vertices found: 1

----- Vertices with name *Obama* -----
Vertex ID 1 {name:str:Barack Obama, role:str:political authority, occupation:str:
44th president of United States of America, country:str:United States, political
party:str:Democratic, religion:str:Christianity}
Vertices found: 1

Managing Text Indexing for Property Graph Data

Using Property Graphs in a Big Data Environment 4-31

https://lucene.apache.org/core/2_9_4/queryparsersyntax.html
https://lucene.apache.org/core/2_9_4/queryparsersyntax.html

See Also:

Exploring the Sample Programs

4.5.2 Using Manual Indexes with the SolrCloud Search Engine
The supplied examples ExampleNoSQL7 and ExampleHBase7 create a property graph
from an input file, create a manual text index on edges, put some data into the index,
and execute some text search queries using Apache SolrCloud.

When using SolrCloud, you must first load a collection's configuration for the text
indexes into Apache Zookeeper, as described in Uploading a Collection's SolrCloud
Configuration to Zookeeper.

The following code fragment creates a manual text index over an existing property
graph using four shards, one shard per node, and a replication factor of 1. The number
of shards corresponds to the number of nodes in the SolrCloud cluster.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create a manual text index using SolrCloud// Specify Index Directory parameters:
configuration name, Solr Server URL, Solr Node set,
// replication factor, zookeeper timeout (secs),
// maximum number of shards per node,
 // number of connections to database, batch size, commit size,
 // write timeout (in secs)
 String configName = "opgconfig";
 String solrServerUrl = "nodea:2181/solr"
 String solrNodeSet = "nodea:8983_solr,nodeb:8983_solr," +
 "nodec:8983_solr,noded:8983_solr";

 int zkTimeout = 15;
 int numShards = 4;
 int replicationFactor = 1;
 int maxShardsPerNode = 1;

OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout,
 numShards,
 replicationFactor,
 maxShardsPerNode,
 4,
 10000,
 500000,
 15);
opg.setDefaultIndexParameters(indexParams);

Managing Text Indexing for Property Graph Data

4-32 User's Guide and Reference

// Create manual indexing on above properties for all vertices
OracleIndex<Edge> index = ((OracleIndex<Edge>) opg.createIndex("myIdx", Edge.class));

Vertex v1 = opg.getVertices("name", "Barack Obama").iterator().next();

Iterator<Edge> edges
 = v1.getEdges(Direction.OUT, "collaborates").iterator();

 while (edges.hasNext()) {
 Edge edge = edges.next();
 Vertex vIn = edge.getVertex(Direction.IN);
 index.put("collaboratesWith", vIn.getProperty("name"), edge);
 }

The next code fragment executes a query over the manual index to get all edges with
the key/value pair collaboratesWith:Beyonce. Additionally, wildcards search
can be supported by specifying the parameter useWildCards in the get API call.

// Find all edges with collaboratesWith Beyonce.
 // Wildcard searching is supported using true parameter.
 edges = index.get("collaboratesWith", "Beyonce").iterator();
 System.out.println("----- Edges with name Beyonce -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
 }
 System.out.println("Edges found: "+ countE);

// Find all vertices with name including Bey*.
 // Wildcard searching is supported using true parameter.
 edges = index.get("collaboratesWith", "*Bey*", true).iterator();
 System.out.println("----- Edges with collaboratesWith Bey* -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
 }
 System.out.println("Edges found: " + countE);

The preceding code example produces output like the following:

----- Edges with name Beyonce -----
Edge ID 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Obama,
occupation:str:44th president of United States of America, political
party:str:Democratic, religion:str:Christianity, role:str:political authority}
=[collaborates]=> Vertex ID 2 {country:str:United States, music genre:str:pop soul ,
name:str:Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]
Edges found: 1

----- Edges with collaboratesWith Bey* -----
Edge ID 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Obama,
occupation:str:44th president of United States of America, political
party:str:Democratic, religion:str:Christianity, role:str:political authority}
=[collaborates]=> Vertex ID 2 {country:str:United States, music genre:str:pop soul ,
name:str:Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]
Edges found: 1

Managing Text Indexing for Property Graph Data

Using Property Graphs in a Big Data Environment 4-33

See Also:

Exploring the Sample Programs

4.5.3 Handling Data Types
Oracle's property graph support indexes and stores an element's Key/Value pairs
based on the value data type. The main purpose of handling data types is to provide
extensive query support like numeric and date range queries.

By default, searches over a specific key/value pair are matched up to a query
expression based on the value's data type. For example, to find vertices with the key/
value pair age:30, a query is executed over all age fields with a data type integer. If
the value is a query expression, you can also specify the data type class of the value to
find by calling the API get(String key, Object value, Class dtClass,
Boolean useWildcards). If no data type is specified, the query expression will be
matched to all possible data types.

When dealing with Boolean operators, each subsequent key/value pair must append
the data type's prefix/suffix so the query can find proper matches. The following
topics describe how to append this prefix/suffix for Apache Lucene and SolrCloud.

• Appending Data Type Identifiers on Apache Lucene

• Appending Data Type Identifiers on SolrCloud

4.5.3.1 Appending Data Type Identifiers on Apache Lucene

When Lucene's data types handling is enabled, you must append the proper data type
identifier as a suffix to the key in the query expression. This can be done by executing
a String.concat() operation to the key. If Lucene's data types handling is
disabled, you must insert the data type identifier as a prefix in the value String. Table
4-1 shows the data type identifiers available for text indexing using Apache Lucene
(see also the Javadoc for LuceneIndex).

Table 4-1 Apache Lucene Data Type Identifiers

Lucene Data Type Identifier Description

TYPE_DT_STRING String

TYPE_DT_BOOL Boolean

TYPE_DT_DATE Date

TYPE_DT_FLOAT Float

TYPE_DT_DOUBLE Double

TYPE_DT_INTEGER Integer

TYPE_DT_SERIALIZABLE Serializable

The following code fragment creates a manual index on edges using Lucene's data
type handling, adds data, and later executes a query over the manual index to get all
edges with the key/value pair collaboratesWith:Beyonce AND
country1:United* using wildcards.

Managing Text Indexing for Property Graph Data

4-34 User's Guide and Reference

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Specify Index Directory parameters (number of directories,
 // number of connections to database, batch size, commit size,
 // enable datatypes, location)
OracleIndexParameters indexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, true,
 "/ home/data/text-index ");
opg.setDefaultIndexParameters(indexParams);
// Create manual indexing on above properties for all edges
OracleIndex<Edge> index = ((OracleIndex<Edge>) opg.createIndex("myIdx", Edge.class));

Vertex v1 = opg.getVertices("name", "Barack Obama").iterator().next();

Iterator<Edge> edges
 = v1.getEdges(Direction.OUT, "collaborates").iterator();

 while (edges.hasNext()) {
 Edge edge = edges.next();
 Vertex vIn = edge.getVertex(Direction.IN);
 index.put("collaboratesWith", vIn.getProperty("name"), edge);
 index.put("country", vIn.getProperty("country"), edge);
 }

// Wildcard searching is supported using true parameter.
 String key = "country";
 key =
key.concat(String.valueOf(oracle.pg.text.lucene.LuceneIndex.TYPE_DT_STRING));

 String queryExpr = "Beyonce AND " + key + ":United*";
 edges = index.get("collaboratesWith", queryExpr, true /
UseWildcard/).iterator();
 System.out.println("----- Edges with query: " + queryExpr + " -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
 }
 System.out.println("Edges found: "+ countE);

The preceding code example might produce output like the following:

----- Edges with name Beyonce AND country1:United* -----
Edge ID 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Obama,
occupation:str:44th president of United States of America, political
party:str:Democratic, religion:str:Christianity, role:str:political authority}
=[collaborates]=> Vertex ID 2 {country:str:United States, music genre:str:pop soul ,
name:str:Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]
Edges found: 1

The following code fragment creates an automatic index on vertices, disables Lucene's
data type handling, adds data, and later executes a query over the manual index from

Managing Text Indexing for Property Graph Data

Using Property Graphs in a Big Data Environment 4-35

a previous example to get all vertices with the key/value pair country:United*
AND role:1*political* using wildcards.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);

String szOPVFile = "../data/connections.opv";
String szOPEFile = "../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index using Apache Lucene engine.
// Specify Index Directory parameters (number of directories,
 // number of connections to database, batch size, commit size,
 // enable datatypes, location)
OracleIndexParameters indexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, false, "/ home/data/text-
index ");
opg.setDefaultIndexParameters(indexParams);

// specify indexed keys
String[] indexedKeys = new String[4];
indexedKeys[0] = "name";
indexedKeys[1] = "role";
indexedKeys[2] = "religion";
indexedKeys[3] = "country";

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class);

// Wildcard searching is supported using true parameter.
 String value = "*political*";
 value = String.valueOf(LuceneIndex.TYPE_DT_STRING) + value;
String queryExpr = "United* AND role:" + value;

vertices = opg.getVertices("country", queryExpr, true /*useWildcard*/).iterator();
 System.out.println("----- Vertices with query: " + queryExpr + " -----");
 countV = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 countV++;
 }
 System.out.println("Vertices found: " + countV);

The preceding code example might produce output like the following:

----- Vertices with query: United* and role:1*political* -----
Vertex ID 30 {name:str:Jerry Brown, role:str:political authority, occupation:str:
34th and 39th governor of California, country:str:United States, political
party:str:Democratic, religion:str:roman catholicism}
Vertex ID 24 {name:str:Edward Snowden, role:str:political authority,
occupation:str:system administrator, country:str:United States,
religion:str:buddhism}
Vertex ID 22 {name:str:John Kerry, role:str:political authority, country:str:United
States, political party:str:Democratic, occupation:str:68th United States Secretary
of State, religion:str:Catholicism}
Vertex ID 21 {name:str:Hillary Clinton, role:str:political authority,
country:str:United States, political party:str:Democratic, occupation:str:67th

Managing Text Indexing for Property Graph Data

4-36 User's Guide and Reference

United States Secretary of State, religion:str:Methodism}
Vertex ID 19 {name:str:Kirsten Gillibrand, role:str:political authority,
country:str:United States, political party:str:Democratic, occupation:str:junior
United States Senator from New York, religion:str:Methodism}
Vertex ID 13 {name:str:Ertharin Cousin, role:str:political authority,
country:str:United States, political party:str:Democratic}
Vertex ID 11 {name:str:Eric Holder, role:str:political authority, country:str:United
States, political party:str:Democratic, occupation:str:United States Deputy Attorney
General}
Vertex ID 1 {name:str:Barack Obama, role:str:political authority, occupation:str:
44th president of United States of America, country:str:United States, political
party:str:Democratic, religion:str:Christianity}
Vertices found: 8

4.5.3.2 Appending Data Type Identifiers on SolrCloud

For Boolean operations on SolrCloud text indexes, you must append the proper data
type identifier as suffix to the key in the query expression. This can be done by
executing a String.concat() operation to the key. Table 4-2 shows the data type
identifiers available for text indexing using SolrCloud (see the Javadoc for
SolrIndex).

Table 4-2 SolrCloud Data Type Identifiers

Solr Data Type Identifier Description

TYPE_DT_STRING String

TYPE_DT_BOOL Boolean

TYPE_DT_DATE Date

TYPE_DT_FLOAT Float

TYPE_DT_DOUBLE Double

TYPE_DT_INTEGER Integer

TYPE_DT_SERIALIZABLE Serializable

The following code fragment creates a manual index on edges using SolrCloud, adds
data, and later executes a query over the manual index to get all edges with the key/
value pair collaboratesWith:Beyonce AND country1:United* using
wildcards.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args,
 szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create a manual text index using SolrCloud// Specify Index Directory parameters:
configuration name, Solr Server URL, Solr Node set,
// replication factor, zookeeper timeout (secs),
// maximum number of shards per node,
 // number of connections to database, batch size, commit size,

Managing Text Indexing for Property Graph Data

Using Property Graphs in a Big Data Environment 4-37

 // write timeout (in secs)
 String configName = "opgconfig";
 String solrServerUrl = "nodea:2181/solr"
 String solrNodeSet = "nodea:8983_solr,nodeb:8983_solr," +
 "nodec:8983_solr,noded:8983_solr";

 int zkTimeout = 15;
 int numShards = 4;
 int replicationFactor = 1;
 int maxShardsPerNode = 1;

OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout,
 numShards,
 replicationFactor,
 maxShardsPerNode,
 4,
 10000,
 500000,
 15);
opg.setDefaultIndexParameters(indexParams);

// Create manual indexing on above properties for all vertices
OracleIndex<Edge> index = ((OracleIndex<Edge>) opg.createIndex("myIdx", Edge.class));

Vertex v1 = opg.getVertices("name", "Barack Obama").iterator().next();

Iterator<Edge> edges
 = v1.getEdges(Direction.OUT, "collaborates").iterator();

 while (edges.hasNext()) {
 Edge edge = edges.next();
 Vertex vIn = edge.getVertex(Direction.IN);
 index.put("collaboratesWith", vIn.getProperty("name"), edge);
 index.put("country", vIn.getProperty("country"), edge);
 }

// Wildcard searching is supported using true parameter.
 String key = "country";
 key = key.concat(oracle.pg.text.solr.SolrIndex.TYPE_DT_STRING);

 String queryExpr = "Beyonce AND " + key + ":United*";
 edges = index.get("collaboratesWith", queryExpr, true /**
UseWildcard*/).iterator();
 System.out.println("----- Edges with query: " + query + " -----");
 countE = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 countE++;
 }
 System.out.println("Edges found: "+ countE);

The preceding code example might produce output like the following:

----- Edges with name Beyonce AND country_str:United* -----
Edge ID 1000 from Vertex ID 1 {country:str:United States, name:str:Barack Obama,
occupation:str:44th president of United States of America, political
party:str:Democratic, religion:str:Christianity, role:str:political authority}

Managing Text Indexing for Property Graph Data

4-38 User's Guide and Reference

=[collaborates]=> Vertex ID 2 {country:str:United States, music genre:str:pop soul ,
name:str:Beyonce, role:str:singer actress} edgeKV[{weight:flo:1.0}]
Edges found: 1

4.5.4 Uploading a Collection's SolrCloud Configuration to Zookeeper
Before using SolrCloud text indexes on Oracle Big Data Spatial and Graph property
graphs, you must upload a collection's configuration to Zookeeper. This can be done
using the ZkCli tool from one of the SolrCloud cluster nodes.

A predefined collection configuration directory can be found in dal/opg-solr-
config under the installation home. The following shows an example on how to
upload the PropertyGraph configuration directory.

1. Copy dal/opg-solr-config under the installation home into /tmp directory on one
of the Solr cluster nodes. For example:

scp –r dal/opg-solr-config user@solr-node:/tmp

2. Execute the following command line like the following example using the ZkCli
tool on the same node:

$SOLR_HOME/bin/zkcli.sh -zkhost 127.0.0.1:2181/solr -cmd upconfig –confname
opgconfig -confdir /tmp/opg-solr-config

4.5.5 Updating Configuration Settings on Text Indexes for Property Graph Data
Oracle's property graph support manages manual and automatic text indexes through
integration with Apache Lucene and SolrCloud. At creation time, you must create an
OracleIndexParameters object specifying the search engine and other
configuration settings to be used by the text index. After a text index for property
graph is created, these configuration settings cannot be changed. For automatic
indexes, all vertex index keys are managed by a single text index, and all edge index
keys are managed by a different text index using the configuration specified when the
first vertex or edge key is indexed.

If you need to change the configuration settings, you must first disable the current
index and create it again using a new OracleIndexParameters object. The
following code fragment creates two automatic Apache Lucene-based indexes (on
vertices and edges) over an existing property graph, disables them, and recreates them
to use SolrCloud.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do parallel data loading
OraclePropertyGraphDataLoader opgdl =
OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index using Apache Lucene.
// Specify Index Directory parameters (number of directories,
// number of connections to database, batch size, commit size,
// enable datatypes, location)
OracleIndexParameters luceneIndexParams =
 OracleIndexParameters.buildFS(4, 4, 10000, 50000, true,
 "/home/data/text-index ");

Managing Text Indexing for Property Graph Data

Using Property Graphs in a Big Data Environment 4-39

// Specify indexed keys
String[] indexedKeys = new String[4];
indexedKeys[0] = "name";
indexedKeys[1] = "role";
indexedKeys[2] = "religion";
indexedKeys[3] = "country";

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class, luceneIndexParams.getParameters());

// Create auto indexing on weight for all edges
opg.createKeyIndex("weight", Edge.class, luceneIndexParams.getParameters());

// Disable auto indexes to change parameters
opg.getOracleIndexManager().disableVertexAutoIndexer();
opg.getOracleIndexManager().disableEdgeAutoIndexer();

// Recreate text indexes using SolrCloud
// Specify Index Directory parameters: configuration name, Solr Server URL, Solr
Node set,
// replication factor, zookeeper timeout (secs),
// maximum number of shards per node,
// number of connections to database, batch size, commit size,
// write timeout (in secs)
String configName = "opgconfig";
String solrServerUrl = "nodea:2181/solr"
String solrNodeSet = "nodea:8983_solr,nodeb:8983_solr," +
 "nodec:8983_solr,noded:8983_solr";

int zkTimeout = 15;
int numShards = 4;
int replicationFactor = 1;
int maxShardsPerNode = 1;

OracleIndexParameters solrIndexParams =
OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout,
 numShards,
 replicationFactor,
 maxShardsPerNode,
 4,
 10000,
 500000,
 15);

// Create auto indexing on above properties for all vertices
opg.createKeyIndex(indexedKeys, Vertex.class, solrIndexParams.getParameters());

// Create auto indexing on weight for all edges
opg.createKeyIndex("weight", Edge.class, solrIndexParams.getParameters());

4.5.6 Using Parallel Query on Text Indexes for Property Graph Data
Text indexes in Oracle Big Data Spatial and Graph allow executing text queries over
millions of vertices and edges by a particular key/value or key/text pair using parallel
query execution.

Managing Text Indexing for Property Graph Data

4-40 User's Guide and Reference

Parallel text querying is an optimized solution taking advantage of the distribution of
the data in the index among shards in SolrCloud (or subdirectories in Apache Lucene),
so each one is queried using separate index connection. This involves multiple threads
and connections to SolrCloud (or Apache Lucene) search engines to increase
performance on read operations and retrieve multiple elements from the index. Note
that this approach will not rank the matching results based on their score.

Parallel text query will produce an array where each element holds all the vertices (or
edges) with an attribute matching the given K/V pair from a shard. The subset of
shards queried will be delimited by the given start sub-directory ID and the size of the
connections array provided. This way, the subset will consider shards in the range of
[start, start - 1 + size of connections array]. Note that an integer ID (in the range of [0,
N - 1]) is assigned to all the shards in index with N shards.

Parallel Text Query Using Apache Lucene

You can use parallel text query using Apache Lucene by calling the method
getPartitioned in LuceneIndex, specifying an array of connections to set of
subdirectories (SearcherManager objects), the key/value pair to search, and the
starting subdirectory ID. Each connection needs to be linked to the appropriate
subdirectory, as each subdirectory is independent of the rest of the subdirectories in
the index.

The following code fragment generates an automatic text index using the Apache
Lucene Search engine, and executes a parallel text query. The number of calls to the
getPartitioned method in the LuceneIndex class is controlled by the total
number of subdirectories and the number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

// Create an automatic index
OracleIndexParameters indexParams
= OracleIndexParameters.buildFS(dop /* number of directories */,
dop /* number of connections
used when indexing */,
10000 /* batch size before commit*/,
500000 /* commit size before Lucene commit*/,
true /* enable datatypes */,
"./lucene-index" /* index location */);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on name property for all vertices
System.out.println("Create automatic index on name for vertices");
opg.createKeyIndex("name", Vertex.class);

// Get the SolrIndex object
LuceneIndex<Vertex> index = (LuceneIndex<Vertex>) opg.getAutoIndex(Vertex.class);

Managing Text Indexing for Property Graph Data

Using Property Graphs in a Big Data Environment 4-41

long lCount = 0;
for (int split = 0; split < index.getTotalShards();
 split += conns.length) {
// Gets a connection object from subdirectory split to
//(split + conns.length)
for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = index.getOracleSearcherManager(idx + split);
}

// Gets elements from split to split + conns.length
Iterable<Vertex>[] iterAr }
= index.getPartitioned(conns /* connections */,
 "name"/* key */,
 "*" /* value */,
 true /* wildcards */,
 split /* start split ID */);

lCount = countFromIterables(iterAr); /* Consume iterables in parallel */

// Close the connections to the sub-directories after completed
for (int idx = 0; idx < conns.length; idx++) {
conns[idx].close();
}
}

// Count all vertices
System.out.println("Vertices found using parallel query: " + lCount);

Parallel Text Search Using SolrCloud

You can use parallel text query using SolrCloud by calling the method
getPartitioned in SolrIndex, specifying an array of connections to SolrCloud
(CloudSolrServer objects), the key/value pair to search, and the starting shard ID.

The following code fragment generates an automatic text index using the SolrCloud
Search engine and executes a parallel text query. The number of calls to the
getPartitioned method in the SolrIndex class is controlled by the total number
of shards in the index and the number of connections used.

OraclePropertyGraph opg = OraclePropertyGraph.getInstance(
 args, szGraphName);

// Clear existing vertices/edges in the property graph
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// This object will handle parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);

String configName = "opgconfig";
String solrServerUrl = args[4];//"localhost:2181/solr"
String solrNodeSet = args[5]; //"localhost:8983_solr";

int zkTimeout = 15; // zookeeper timeout in seconds
int numShards = Integer.parseInt(args[6]); // number of shards in the index
int replicationFactor = 1; // replication factor
int maxShardsPerNode = 1; // maximum number of shards per node

// Create an automatic index using SolrCloud

Managing Text Indexing for Property Graph Data

4-42 User's Guide and Reference

OracleIndexParameters indexParams =
 OracleIndexParameters.buildSolr(configName,
 solrServerUrl,
 solrNodeSet,
 zkTimeout /* zookeeper timeout in seconds */,
 numShards /* total number of shards */,
 replicationFactor /* Replication factor */,
 maxShardsPerNode /* maximum number of shardsper node*/,
 4 /* dop used for scan */,
 10000 /* batch size before commit*/,
 500000 /* commit size before SolrCloud commit*/,
 15 /* write timeout in seconds */);

opg.setDefaultIndexParameters(indexParams);

// Create auto indexing on name property for all vertices
System.out.println("Create automatic index on name for vertices");
opg.createKeyIndex("name", Vertex.class);

// Get the SolrIndex object
SolrIndex<Vertex> index = (SolrIndex<Vertex>) opg.getAutoIndex(Vertex.class);

// Open an array of connections to handle connections to SolrCloud needed for
parallel text search
CloudSolrServer[] conns = new CloudSolrServer[dop];

for (int idx = 0; idx < conns.length; idx++) {
conns[idx] = index.getCloudSolrServer(15 /* write timeout in
secs*/);
}

// Iterate to cover all the shards in the index
long lCount = 0;
for (int split = 0; split < index.getTotalShards();
 split += conns.length) {
// Gets elements from split to split + conns.length
Iterable<Vertex>[] iterAr = index.getPartitioned(conns /* connections */,
 "name"/* key */,
 "*" /* value */,
 true /* wildcards */,
 split /* start split ID */);

lCount = countFromIterables(iterAr); /* Consume iterables in parallel */
}

// Close the connections to the sub-directories after completed
for (int idx = 0; idx < conns.length; idx++) {
conns[idx].shutdown();
}

// Count results
System.out.println("Vertices found using parallel query: " + lCount);

4.6 Support for Secure Oracle NoSQL Database
Oracle Big Data Spatial and Graph property graph support works with both secure
and non-secure Oracle NoSQL Database installations. This topic provides information
about how o use property graph functions with a secure Oracle NoSQL Database
setup. It assumes that a secure Oracle NoSQL Database is already installed (a process

Support for Secure Oracle NoSQL Database

Using Property Graphs in a Big Data Environment 4-43

explained in "Performing a Secure Oracle NoSQL Database Installation" in the Oracle
NoSQL Database Security Guide at http://docs.oracle.com/cd/NOSQL/html/
SecurityGuide/secure_installation.html).

You must have the correct credentials to access the secure database. Create a user such
as the following:

kv-> plan create-user -name myusername -admin -wait

Grant this user the readwrite and dbaadmin roles. For example:

kv-> plan grant -user myusername -role readwrite -wait
kv-> plan grant -user myusername -role dbadmin -wait

When generating the login_properties.txt from the file client.security,
make sure the user name is correct. For example:

oracle.kv.auth.username=myusername

On Oracle property graph client side, you must have the security-related files and
libraries to interact with the secure Oracle NoSQL Database. First, copy these files (or
directories) from KVROOT/security/ to the client side:

client.security
client.trust
login.wallet/
login_properties.txt

If Oracle Wallet is used to hold passwords that are needed for accessing the secure
database, copy these three libraries to the client side and set the class path correctly:

oraclepki.jar
osdt_cert.jar
osdt_core.jar

After configuring the database and Oracle property graph client side correctly, you
can connect to a graph stored in Secure NoSQL Database using either one of the
following two approaches.

• Specify the login properties file, using a Java VM setting wuith the following
format:

-Doracle.kv.security=/<your-path>/login_properties.txt

You can also set this Java VM property for applications deployed into a J2EE
container (including in-memory analytics). For example, before starting WebLogic
Server, you can set an environment variable in the following format to refer to the
login properties configuration file:

setenv JAVA_OPTIONS "-Doracle.kv.security=/<your-path>/login_properties.txt"

Then you can call OraclePropertyGraph.getInstance(kconfig,
szGraphName) as usual to create an OraclePropertyGraph instance.

• Call OraclePropertyGraph.getInstance(kconfig, szGraphName,
username, password, truStoreFile), where username and password are
the correct credentials o access secure Oracle NoSQL Database, and
truStoreFile is the path to the client side trust store file client.trust.

Support for Secure Oracle NoSQL Database

4-44 User's Guide and Reference

http://docs.oracle.com/cd/NOSQL/html/SecurityGuide/secure_installation.html
http://docs.oracle.com/cd/NOSQL/html/SecurityGuide/secure_installation.html

The following code fragment creates a property graph in a Secure Oracle NoSQL
Database, loads the data, and then counts how many vertices and edges in the
graph:

// This object will handle operations over the property graph
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(kconfig,
szGraphName,
username,
password,
truStoreFile);

// Clear existing vertices/edges in the property graph
opg.clearRepository();
opg.setQueueSize(100); // 100 elements

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";
// This object will handle parallel data loading over the property graph
System.out.println("Load data for graph " + szGraphName);
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);
// Count all vertices
long countV = 0;
Iterator<Vertex> vertices = opg.getVertices().iterator();
while (vertices.hasNext()) {
vertices.next();
countV++;
}

System.out.println("Vertices found: " + countV);
// Count all edges
long countE = 0;
Iterator<Edge> edges = opg.getEdges().iterator();
while (edges.hasNext()) {
edges.next();
countE++;
}

System.out.println("Edges found: " + countE);

4.7 Support for Secure Apache HBase/Hadoop
Kerberos authentication is recommended for Apache HBase to secure property graphs
in Oracle Big Data Spatial and Graph.

Oracle's property graph support works with both secure and non-secure Cloudera
Hadoop (CDH) cluster installations. This topic provides information about secure
Apache HBase installations.

Kerberos authentication is recommended for Apache HBase to secure property graphs
in Oracle Big Data Spatial and Graph.

This topic assumes that a secure Apache HBase is already configured with Kerberos,
that the client machine has the Kerberos libraries installed and that you have the
correct credentials. For detailed information, see "Configuring Kerberos
Authentication for HBase" at: http://www.cloudera.com/content/
cloudera/en/documentation/core/latest/topics/
cdh_sg_hbase_authentication.html. For information about how to set up your
Kerberos cluster and clients, see the MIT Kerberos Documentation athttp://
web.mit.edu/kerberos/krb5-latest/doc/index.html.

Support for Secure Apache HBase/Hadoop

Using Property Graphs in a Big Data Environment 4-45

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_hbase_authentication.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_hbase_authentication.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_hbase_authentication.html
http://web.mit.edu/kerberos/krb5-latest/doc/index.html
http://web.mit.edu/kerberos/krb5-latest/doc/index.html

On the client side, you must have a Kerberos credential to interact with the Kerberos-
enabled HDFS daemons. Additionally, you need to modify the Kerberos configuration
information (located in krb5.conf) to include the realm and mappings of hostnames
onto Kerberos realms used in the Secure CDH Cluster.

The following code fragment shows the realm and hostname mapping used in a
Secure CDH cluster on BDA.COM:

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = yes

[realms]
 EXAMPLE.COM = {
kdc = hostname1.example.com:88
kdc = hostname2.example.com:88
admin_server = hostname1.example.com:749
default_domain = example.com
 }
BDA.COM = {
kdc = hostname1.bda.com:88
kdc = hostname2.bda.com:88
admin_server = hostname1.bda.com:749
default_domain = bda.com
 }

[domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM
 .bda.com = BDA.COM
 bda.com = BDA.COM

After modifying krb5.conf, you can connect to a graph stored in Apache HBase by
using a Java Authentication and Authorization Service (JAAS) configuration file to
provide your credentials to the application. This provides the same capabilities of the
preceding example without having to modify a single line of your code in case you
already have an application that uses an insecure Apache HBase installation.

To use property graph support for for HBase with a JAAS configuration, create a file
with content in the following form, replacing the keytab and principal entries
with your own information:

Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
useTicketCache=true
keyTab="/path/to/your/keytab/user.keytab"
principal="your-user/your.fully.qualified.domain.name@YOUR.REALM";
};

The following code fragment shows an example JAAS file with the realm used in a
Secure CDH cluster on BDA.COM:

Client {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
useTicketCache=true

Support for Secure Apache HBase/Hadoop

4-46 User's Guide and Reference

keyTab="/path/to/keytab/user.keytab"
principal="hbaseuser/hostname1@BDA.COM";
};

In order to run your Secure HBase application you must specify the JAAS
configuration file you created by using the java.security.auth.login.config flag. You can
run your application using a command in the following format:

java -Djava.security.auth.login.config=/path/to/your/jaas.conf/ -classpath ./
classes/:../../lib/'*' YourJavaApplication

Then, you can call OraclePropertyGraph.getInstance(conf, hconn,
szGraphName) as usual to create an Oracle property graph.

Another option to use the Oracle Big Data Spatial and Graph property graph support
on a secure Apache HBase installation is to use a secure HBase configuration. The
following code fragment shows how to obtain a secure HBase configuration using
prepareSecureConfig(). This API requires the security authentication setting used in
Apache Hadoop and Apache HBase, as well as Kerberos credentials set to authenticate
and obtain an authorized ticket.

The following code fragment creates a property graph in a Secure Apache HBase,
loads the data, and then counts how many vertices and edges in the graph.

String szQuorum= "hostname1,hostname2,hostname3";
String szCliPort = "2181";
String szGraph = "SecureGraph";

String hbaseSecAuth="kerberos";
String hadoopSecAuth="kerberos";
String hmKerberosPrincipal="hbase/_HOST@BDA.COM";
String rsKerberosPrincipal="hbase/_HOST@BDA.COM";
String userPrincipal = "hbase/hostname1@BDA.COM";
String keytab= "/path/to/your/keytab/hbase.keytab";
int dop= 8;

Configuration conf = HBaseConfiguration.create();
conf.set("hbase.zookeeper.quorum", szQuorum);
conf.set("hbase.zookeeper.property.clientPort", szCliPort);

// Prepare the secure configuration providing the credentials in the keytab
conf = OraclePropertyGraph.prepareSecureConfig(conf,
 hbaseSecAuth,
 hadoopSecAuth,
 hmKerberosPrincipal,
 rsKerberosPrincipal,
 userPrincipal,
 keytab);
HConnection hconn = HConnectionManager.createConnection(conf);

OraclePropertyGraph opg=OraclePropertyGraph.getInstance(conf, hconn, szGraph);
opg.setInitialNumRegions(24);
opg.clearRepository();

String szOPVFile = "../../data/connections.opv";
String szOPEFile = "../../data/connections.ope";

// Do a parallel data loading
OraclePropertyGraphDataLoader opgdl = OraclePropertyGraphDataLoader.getInstance();
opgdl.loadData(opg, szOPVFile, szOPEFile, dop);
opg.commit();

Support for Secure Apache HBase/Hadoop

Using Property Graphs in a Big Data Environment 4-47

4.8 Using the Groovy Shell with Property Graph Data
The Oracle Big Data Spatial and Graph property graph support includes a built-in
Groovy shell (based on the original Gremlin Groovy shell script). With this command-
line shell interface, you can explore the Java APIs.

To start the Groovy shell, go to the dal/groovy directory under the installation home
(/opt/oracle/oracle-spatial-graph/property_graph by default). For
example:

cd /opt/oracle/oracle-spatial-graph/property_graph/dal/groovy/

Included are the scripts gremlin-opg-nosql.sh and gremlin-opg-hbase.sh,
for connecting to an Oracle NoSQL Database and an Apache HBase, respectively.

Note: To run some gremlin traversal examples, you must first do the
following import operation:

import com.tinkerpop.pipes.util.structures.*;

The following example connects to an Oracle NoSQL Database, gets an instance of
OraclePropertyGraph with graph name myGraph, loads some example graph
data, and gets the list of vertices and edges.

$./gremlin-opg-nosql.sh

opg-nosql>
opg-nosql> hhosts = new String[1];
==>null

opg-nosql> hhosts[0] = "bigdatalite:5000";
==>bigdatalite:5000

opg-nosql> cfg =
GraphConfigBuilder.forPropertyGraphNosql().setName("myGraph").setHosts(Arrays.asList(
hhosts)).setStoreName("mystore").addEdgeProperty("lbl", PropertyType.STRING,
"lbl").addEdgeProperty("weight", PropertyType.DOUBLE, "1000000").build();
==>{"db_engine":"NOSQL","loading":{},"format":"pg","name":"myGraph","error_handling":
{},"hosts":["bigdatalite:5000"],"node_props":[],"store_name":"mystore","edge_props":
[{"type":"string","name":"lbl","default":"lbl"},
{"type":"double","name":"weight","default":"1000000"}]}

opg-nosql> opg = OraclePropertyGraph.getInstance(cfg);
==>oraclepropertygraph with name myGraph

opg-nosql> opgdl = OraclePropertyGraphDataLoader.getInstance();
==>oracle.pg.nosql.OraclePropertyGraphDataLoader@576f1cad

opg-nosql> opgdl.loadData(opg, new FileInputStream("../../data/connections.opv"),
new FileInputStream("../../data/connections.ope"), 1, 1, 0, null);
==>null

opg-nosql> opg.getVertices();
==>Vertex ID 5 {country:str:Italy, name:str:Pope Francis, occupation:str:pope,
religion:str:Catholicism, role:str:Catholic religion authority}
[... other output lines omitted for brevity ...]

Using the Groovy Shell with Property Graph Data

4-48 User's Guide and Reference

opg-nosql> opg.getEdges();
==>Edge ID 1139 from Vertex ID 64 {country:str:United States, name:str:Jeff Bezos,
occupation:str:business man} =[leads]=> Vertex ID 37 {country:str:United States,
name:str:Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]
[... other output lines omitted for brevity ...]

The following example customizes several configuration parameters for in-memory
analytics. It connects to an Apache HBase, gets an instance of
OraclePropertyGraph with graph name myGraph, loads some example graph
data, gets the list of vertices and edges, gets an in-memory analyst, and execute one of
the built-in analytics, triangle counting.

$./gremlin-opg-hbase.sh
opg-hbase>
opg-hbase> dop=2; // degree of parallelism
==>2
opg-hbase> confPgx = new HashMap<PgxConfig.Field, Object>();
opg-hbase> confPgx.put(PgxConfig.Field.ENABLE_GM_COMPILER, false);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.NUM_WORKERS_IO, dop + 2);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.NUM_WORKERS_ANALYSIS, 3);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.NUM_WORKERS_FAST_TRACK_ANALYSIS, 2);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.SESSION_TASK_TIMEOUT_SECS, 0);
==>null
opg-hbase> confPgx.put(PgxConfig.Field.SESSION_IDLE_TIMEOUT_SECS, 0);
==>null
opg-hbase> instance = Pgx.getInstance()
==>null
opg-hbase> instance.startEngine(confPgx)
==>null

opg-hbase> cfg =
GraphConfigBuilder.forPropertyGraphHbase() .setName("myGraph") .setZkQuorum("bigdatal
ite") .setZkClientPort(iClientPort) .setZkSessionTimeout(60000) .setMaxNumConnection
s(dop) .setLoadEdgeLabel(true) .setSplitsPerRegion(1) .addEdgeProperty("lbl",
PropertyType.STRING, "lbl") .addEdgeProperty("weight", PropertyType.DOUBLE,
"1000000") .build();
==>{"splits_per_region":1,"max_num_connections":2,"node_props":
[],"format":"pg","load_edge_label":true,"name":"myGraph","zk_client_port":
2181,"zk_quorum":"bigdatalite","edge_props":
[{"type":"string","default":"lbl","name":"lbl"},
{"type":"double","default":"1000000","name":"weight"}],"loading":{},"error_handling":
{},"zk_session_timeout":60000,"db_engine":"HBASE"}

opg-hbase> opg = OraclePropertyGraph.getInstance(cfg);
==>oraclepropertygraph with name myGraph

opg-hbase> opgdl = OraclePropertyGraphDataLoader.getInstance();
==>oracle.pg.hbase.OraclePropertyGraphDataLoader@3451289b

opg-hbase> opgdl.loadData(opg, "../../data/connections.opv", "../../data/
connections.ope", 1, 1, 0, null);
==>null

opg-hbase> opg.getVertices();
==>Vertex ID 78 {country:str:United States, name:str:Hosain Rahman,
occupation:str:CEO of Jawbone}

Using the Groovy Shell with Property Graph Data

Using Property Graphs in a Big Data Environment 4-49

...

opg-hbase> opg.getEdges();
==>Edge ID 1139 from Vertex ID 64 {country:str:United States, name:str:Jeff Bezos,
occupation:str:business man} =[leads]=> Vertex ID 37 {country:str:United States,
name:str:Amazon, type:str:online retailing} edgeKV[{weight:flo:1.0}]
[... other output lines omitted for brevity ...]

opg-hbase> session = Pgx.createSession("session-id-1");
opg-hbase> g = session.readGraphWithProperties(cfg);
opg-hbase> analyst = session.createAnalyst();

opg-hbase> triangles = analyst.countTriangles(false).get();
==>22

For detailed information about the Java APIs, see the Javadoc reference information in
doc/dal/ and doc/pgx/ under the installation home (/opt/oracle/oracle-
spatial-graph/property_graph/ by default).

4.9 Exploring the Sample Programs
The software installation includes a directory of example programs, which you can use
to learn about creating and manipulating property graphs.

• About the Sample Programs

• Compiling and Running the Sample Programs

• About the Example Output

• Example: Creating a Property Graph

• Example: Dropping a Property Graph

• Examples: Adding and Dropping Vertices and Edges

4.9.1 About the Sample Programs
The sample programs are distributed in an installation subdirectory named
examples/dal. The examples are replicated for HBase and Oracle NoSQL Database,
so that you can use the set of programs corresponding to your choice of backend
database. Table 4-3 describes the some of the programs.

Table 4-3 Property Graph Program Examples (Selected)

Program Name Description

ExampleNoSQL1

ExampleHBase1

Creates a minimal property graph consisting of one vertex, sets
properties with various data types on the vertex, and queries the
database for the saved graph description.

ExampleNoSQL2

ExampleHBase2

Creates the same minimal property graph as Example1, and then
deletes it.

ExampleNoSQL3

ExampleHBase3

Creates a graph with multiple vertices and edges. Deletes some vertices
and edges explicitly, and other implicitly by deleting other, required
objects. This example queries the database repeatedly to show the
current list of objects.

Exploring the Sample Programs

4-50 User's Guide and Reference

4.9.2 Compiling and Running the Sample Programs
To compile and run the Java source files:

1. Change to the examples directory:

cd examples/dal

2. Use the Java compiler:

javac -classpath ../../lib/'*' filename.java

For example: javac -classpath ../../lib/'*' ExampleNoSQL1.java

3. Execute the compiled code:

java -classpath ../../lib/'*':./ filename args

The arguments depend on whether you are using Oracle NoSQL Database or
Apache HBase to store the graph. The values are passed to
OraclePropertyGraph.getInstance.

Apache HBase Argument Descriptions

Provide these arguments when using the HBase examples:

1. quorum: A comma-delimited list of names identifying the nodes where HBase
runs, such as "node01.example.com, node02.example.com,
node03.example.com".

2. client_port: The HBase client port number, such as "2181".

3. graph_name: The name of the graph, such as "customer_graph".

Oracle NoSQL Database Argument Descriptions

Provide these arguments when using the NoSQL examples:

1. host_name: The cluster name and port number for Oracle NoSQL Database
registration, such as "cluster02:5000".

2. store_name: The name of the key-value store, such as "kvstore"

3. graph_name: The name of the graph, such as "customer_graph".

4.9.3 About the Example Output
The example programs use System.out.println to retrieve the property graph
descriptions from the database where it is stored, either Oracle NoSQL Database or
Apache HBase. The key name, data type, and value are delimited by colons. For
example, weight:flo:30.0 indicates that the key name is weight, the data type is
float, and the value is 30.0.

Table 4-4 identifies the data type abbreviations used in the output.

Table 4-4 Property Graph Data Type Abbreviations

Abbreviation Data Type

bol Boolean

Exploring the Sample Programs

Using Property Graphs in a Big Data Environment 4-51

Table 4-4 (Cont.) Property Graph Data Type Abbreviations

Abbreviation Data Type

dat date

dbl double

flo float

int integer

ser serializable

str string

4.9.4 Example: Creating a Property Graph
ExampleNoSQL1 and ExampleHBase1 create a minimal property graph consisting of
one vertex. The code fragment in Example 4-5 creates a vertex named v1 and sets
properties with various data types. It then queries the database for the saved graph
description.

Example 4-5 Creating a Property Graph

// Create a property graph instance named opg
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args);

// Clear all vertices and edges from opg
 opg.clearRepository();

// Create vertex v1 and assign it properties as key-value pairs
 Vertex v1 = opg.addVertex(1l);
 v1.setProperty("age", Integer.valueOf(18));
 v1.setProperty("name", "Name");
 v1.setProperty("weight", Float.valueOf(30.0f));
 v1.setProperty("height", Double.valueOf(1.70d));
 v1.setProperty("female", Boolean.TRUE);

// Save the graph in the database
 opg.commit();

// Display the stored vertex description
System.out.println("Fetch 1 vertex: " + opg.getVertices().iterator().next());

// Close the graph instance
 opg.shutdown();

The OraclePropertyGraph.getInstance arguments (args) depend on whether
you are using Oracle NoSQL Database or Apache HBase to store the graph. See
“Compiling and Running the Sample Programs”.

System.out.println displays the following output:

Fetch 1 vertex: Vertex ID 1 {age:int:18, name:str:Name, weight:flo:30.0, height:dbl:
1.7, female:bol:true}

See the property graph support Javadoc (/opt/oracle/oracle-spatial-graph/
property_graph/doc/pgx by default) for the following:

Exploring the Sample Programs

4-52 User's Guide and Reference

OraclePropertyGraph.addVertex
OraclePropertyGraph.clearRepository
OraclePropertyGraph.getInstance
OraclePropertyGraph.getVertices
OraclePropertyGraph.shutdown
Vertex.setProperty

4.9.5 Example: Dropping a Property Graph
ExampleNoSQL2 and ExampleHBase2 create a graph like the one in “Example:
Creating a Property Graph”, and then drop it from the database.

The code fragment in Example 4-6 drops the graph. See “Compiling and Running the
Sample Programs” for descriptions of the
OraclePropertyGraphUtils.dropPropertyGraph arguments.

Example 4-6 Dropping a Property Graph

// Drop the property graph from the database
OraclePropertyGraphUtils.dropPropertyGraph(args);

// Display confirmation that the graph was dropped
System.out.println("Graph " + graph_name + " dropped. ");

System.out.println displays the following output:

Graph graph_name dropped.

See the Javadoc for OraclePropertyGraphUtils.dropPropertyGraph.

4.9.6 Examples: Adding and Dropping Vertices and Edges
ExampleNoSQL3 and ExampleHBase3 add and drop both vertices and edges.

Example 4-7 Creating the Vertices

The code fragment in Example 4-7 creates three vertices. It is a simple variation of
Example 4-5.

// Create a property graph instance named opg
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(args);

// Clear all vertices and edges from opg
 opg.clearRepository();

// Add vertices a, b, and c
 Vertex a = opg.addVertex(1l);
 a.setProperty("name", "Alice");
 a.setProperty("age", 31);

 Vertex b = opg.addVertex(2l);
 b.setProperty("name", "Bob");
 b.setProperty("age", 27);

 Vertex c = opg.addVertex(3l);
 c.setProperty("name", "Chris");
 c.setProperty("age", 33);

Example 4-8 Creating the Edges

The code fragment in Example 4-8 uses vertices a, b, and c to create the edges.

Exploring the Sample Programs

Using Property Graphs in a Big Data Environment 4-53

// Add edges e1, e2, and e3
 Edge e1 = opg.addEdge(1l, a, b, "knows");
 e1.setProperty("type", "partners");

 Edge e2 = opg.addEdge(2l, a, c, "knows");
 e2.setProperty("type", "friends");

 Edge e3 = opg.addEdge(3l, b, c, "knows");
 e3.setProperty("type", "colleagues");

Example 4-9 Deleting Edges and Vertices

The code fragment in Example 4-9 explicitly deletes edge e3 and vertex b. It implicitly
deletes edge e1, which was connected to vertex b.

 // Remove edge e3
 opg.removeEdge(e3);

// Remove vertex b and all related edges
 opg.removeVertex(b);

Example 4-10 Querying for Vertices and Edges

This example queries the database to show when objects are added and dropped. The
code fragment in Example 4-10 shows the method used.

// Print all vertices
 vertices = opg.getVertices().iterator();
 System.out.println("----- Vertices ----");
 vCount = 0;
 while (vertices.hasNext()) {
 System.out.println(vertices.next());
 vCount++;
 }
 System.out.println("Vertices found: " + vCount);

 // Print all edges
 edges = opg.getEdges().iterator();
 System.out.println("----- Edges ----");
 eCount = 0;
 while (edges.hasNext()) {
 System.out.println(edges.next());
 eCount++;
 }
 System.out.println("Edges found: " + eCount);

The examples in this topic may produce output like the following:

----- Vertices ----
Vertex ID 3 {name:str:Chris, age:int:33}
Vertex ID 1 {name:str:Alice, age:int:31}
Vertex ID 2 {name:str:Bob, age:int:27}
Vertices found: 3
----- Edges ----
Edge ID 2 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 3
{name:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edge ID 3 from Vertex ID 2 {name:str:Bob, age:int:27} =[knows]=> Vertex ID 3
{name:str:Chris, age:int:33} edgeKV[{type:str:colleagues}]
Edge ID 1 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 2
{name:str:Bob, age:int:27} edgeKV[{type:str:partners}]
Edges found: 3
 Remove edge Edge ID 3 from Vertex ID 2 {name:str:Bob, age:int:27} =[knows]=> Vertex

Exploring the Sample Programs

4-54 User's Guide and Reference

ID 3 {name:str:Chris, age:int:33} edgeKV[{type:str:colleagues}]
----- Vertices ----
Vertex ID 1 {name:str:Alice, age:int:31}
Vertex ID 2 {name:str:Bob, age:int:27}
Vertex ID 3 {name:str:Chris, age:int:33}
Vertices found: 3
----- Edges ----
Edge ID 2 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 3
{name:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edge ID 1 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 2
{name:str:Bob, age:int:27} edgeKV[{type:str:partners}]
Edges found: 2
Remove vertex Vertex ID 2 {name:str:Bob, age:int:27}
----- Vertices ----
Vertex ID 1 {name:str:Alice, age:int:31}
Vertex ID 3 {name:str:Chris, age:int:33}
Vertices found: 2
----- Edges ----
Edge ID 2 from Vertex ID 1 {name:str:Alice, age:int:31} =[knows]=> Vertex ID 3
{name:str:Chris, age:int:33} edgeKV[{type:str:friends}]
Edges found: 1

4.10 Oracle Flat File Format Definition
A property graph can be defined in two flat files, specifically description files for the
vertices and edges.

• About the Property Graph Description Files

• Vertex File

• Edge File

• Encoding Special Characters

• Example Property Graph in Oracle Flat File Format

4.10.1 About the Property Graph Description Files
A pair of files describe a property graph:

• Vertex file: Describes the vertices of the property graph. This file has an .opv file
name extension.

• Edge file: Describes the edges of the property graph. This file has an .ope file
name extension.

It is recommended that these two files share the same base name. For example,
simple.opv and simple.ope define a property graph.

4.10.2 Vertex File
Each line in a vertex file is a record that describes a vertex of the property graph. A
record can describe one key-value property of a vertex, thus multiple records/lines are
used to describe a vertex with multiple properties.

A record contains six fields separated by commas. Each record must contain five
commas to delimit all fields, whether or not they have values:

vertex_ID, key_name, value_type, value, value, value

Oracle Flat File Format Definition

Using Property Graphs in a Big Data Environment 4-55

Table 4-5 describes the fields composing a vertex file record.

Table 4-5 Vertex File Record Format

Field
Number

Name1 Description

1 vertex_ID An integer that uniquely identifies the vertex

2 key_name The name of the key in the key-value pair

If the vertex has no properties, then enter a space
(%20). This example describes vertex 1 with no
properties:

1,%20,,,,

3 value_type An integer that represents the data type of the value in
the key-value pair:

1 String
2 Integer
3 Float
4 Double
5 Date
6 Boolean
101 Serializable Java object

4 value The encoded, nonnull value of key_name when it is
neither numeric nor date

5 value The encoded, nonnull value of key_name when it is
numeric

6 value The encoded, nonnull value of key_name when it is a
date

Use the Java SimpleDateFormat class to identify the
format of the date. This example describes the date
format of 2015-03-26T00:00:00.000-05:00:

SimpleDateFormat sdf = new
SimpleDateFormat("yyyy-MM-
dd'T'HH:mm:ss.SSSXXX");
encode(sdf.format((java.util.Date) value));

1 Names do not appear in the vertex files, but are provided here to simplify field references.

Required Grouping of Vertices: A vertex can have multiple properties, and the vertex
file includes a record (represented by a single line of text in the flat file) for each
combination of a vertex ID and a property for that vertex. In the vertex file, all records
for each vertex must be grouped together (that is, not have any intervening records for
other vertices. You can accomplish this any way you want, but a convenient way is to
sort the vertex file records in ascending (or descending) order by vertex ID. (Note,
however, a vertex file is not required to have all records sorted by vertex ID; this is
merely one way to achieve the grouping requirement.)

Oracle Flat File Format Definition

4-56 User's Guide and Reference

4.10.3 Edge File
Each line in an edge file is a record that describes an edge of the property graph. A
record can describe one key-value property of an edge, thus multiple records are used
to describe an edge with multiple properties.

A record contains nine fields separated by commas. Each record must contain eight
commas to delimit all fields, whether or not they have values:

edge_ID, source_vertex_ID, destination_vertex_ID, edge_label, key_name, value_type, value,
value, value

Table 4-6 describes the fields composing an edge file record.

Table 4-6 Edge File Record Format

Field
Number

Name1 Description

1 edge_ID An integer that uniquely identifies the edge

2 source_vertex_ID The vertex_ID of the outgoing tail of the edge.

3 destination_vertex_ID The vertex_ID of the incoming head of the edge.

4 edge_label The encoded label of the edge, which describes the
relationship between the two vertices

5 key_name The encoded name of the key in a key-value pair

If the edge has no properties, then enter a space
(%20). This example describes edge 100 with no
properties:

100,1,2,likes,%20,,,,

6 value_type An integer that represents the data type of the
value in the key-value pair:

1 String
2 Integer
3 Float
4 Double
5 Date
6 Boolean
10 Serializable Java object

7 value The encoded, nonnull value of key_name when it is
neither numeric nor date

8 value The encoded, nonnull value of key_name when it is
numeric

Oracle Flat File Format Definition

Using Property Graphs in a Big Data Environment 4-57

Table 4-6 (Cont.) Edge File Record Format

Field
Number

Name1 Description

9 value The encoded, nonnull value of key_name when it is
a date

Use the Java SimpleDateFormat class to identify
the format of the date. This example describes the
date format of
2015-03-26Th00:00:00.000-05:00:

SimpleDateFormat sdf = new
SimpleDateFormat("yyyy-MM-
dd'Th'HH:mm:ss.SSSXXX");
encode(sdf.format((java.util.Date) value));

1 Names do not appear in the edge files, but are provided here to simplify field references.

Required Grouping of Edges: An edge can have multiple properties, and the edge file
includes a record (represented by a single line of text in the flat file) for each
combination of an edge ID and a property for that edge. In the edge file, all records for
each edge must be grouped together (that is, not have any intervening records for
other edges. You can accomplish this any way you want, but a convenient way is to
sort the edge file records in ascending (or descending) order by edge ID. (Note,
however, an edge file is not required to have all records sorted by edge ID; this is
merely one way to achieve the grouping requirement.)

4.10.4 Encoding Special Characters
The encoding is UTF-8 for the vertex and edge files. Table 4-7 lists the special
characters that must be encoded as strings when they appear in a vertex or edge
property (key-value pair) or an edge label. No other characters require encoding.

Table 4-7 Special Character Codes in the Oracle Flat File Format

Special Character String Encoding Description

% %25 Percent

\t %09 Tab

%20 Space

\n %0A New line

\r %0D Return

, %2C Comma

4.10.5 Example Property Graph in Oracle Flat File Format
An example property graph in Oracle flat file format is as follows. In this example,
there are two vertices (John and Mary), and a single edge denoting that John is a friend
of Mary.

Oracle Flat File Format Definition

4-58 User's Guide and Reference

%cat simple.opv
1,age,2,,10,
1,name,1,John,,
2,name,1,Mary,,
2,hobby,1,soccer,,

%cat simple.ope
100,1,2,friendOf,%20,,,,

4.11 Example Python User Interface
The Oracle Big Data Spatial and Graph support for property graphs includes an
example Python user interface. It can invoke a set of example Python scripts and
modules that perform a variety of property graph operations.

Instructions for installing the example Python user interface are in the /
property_graph/examples/pyopg/README file under the installation home
(/opt/oracle/oracle-spatial-graph by default).

The example Python scripts in /property_graph/examples/pyopg/ can used
with Oracle Spatial and Graph Property Graph, and you may want to change and
enhance them (or copies of them) to suit your needs.

To invoke the user interface to run the examples, use the script pyopg.sh.

The examples include the following:

• Example 1: Connect to an Oracle NoSQL Database and perform a simple check of
number of vertices and edges. To run it:

cd /opt/oracle/oracle-spatial-graph/property_graph/examples/pyopg
./pyopg.sh

connectONDB("mygraph", "kvstore", "localhost:5000")
print "vertices", countV()
print "edges", countE()

In the preceding example, mygraph is the name of the graph stored in the Oracle
NoSQL Database, kvstore and localhost:5000 are the connection information
to access the Oracle NoSQL Database. They must be customized for your
environment.

• Example 2: Connect to an Apache HBase and perform a simple check of number of
vertices and edges. To run it:

cd /opt/oracle/oracle-spatial-graph/property_graph/examples/pyopg
./pyopg.sh

connectHBase("mygraph", "localhost", "2181")
print "vertices", countV()
print "edges", countE()

In the preceding example, mygraph is the name of the graph stored in the Apache
HBase, and localhost and 2181 are the connection information to access the
Apache HBase. They must be customized for your environment.

• Example 3: Connect to an Oracle NoSQL Database and run a few analytical
functions. To run it:

cd /opt/oracle/oracle-spatial-graph/property_graph/examples/pyopg
./pyopg.sh

Example Python User Interface

Using Property Graphs in a Big Data Environment 4-59

connectONDB("mygraph", "kvstore", "localhost:5000")
print "vertices", countV()
print "edges", countE()

import pprint

analyzer = analyst()
print "# triangles in the graph", analyzer.countTriangles()

graph_communities = [{"commid":i.getId(),"size":i.size()} for i in
analyzer.communities().iterator()]

import pandas as pd
import numpy as np

community_frame = pd.DataFrame(graph_communities)
community_frame[:5]

import matplotlib as mpl
import matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(16,12));
community_frame["size"].plot(kind="bar", title="Communities and Sizes")
ax.set_xticklabels(community_frame.index);
plt.show()

The preceding example connects to an Oracle NoSQL Database, prints basic
information about the vertices and edges, get an in memory analyst, computes the
number of triangles, performs community detection, and finally plots out in a bar
chart communities and their sizes.

• Example 4: Connect to an Apache HBase and run a few analytical functions. To run
it:

cd /opt/oracle/oracle-spatial-graph/property_graph/examples/pyopg
./pyopg.sh

connectHBase("mygraph", "localhost", "2181")
print "vertices", countV()
print "edges", countE()

import pprint

analyzer = analyst()
print "# triangles in the graph", analyzer.countTriangles()

graph_communities = [{"commid":i.getId(),"size":i.size()} for i in
analyzer.communities().iterator()]
import pandas as pd
import numpy as np
community_frame = pd.DataFrame(graph_communities)
community_frame[:5]

import matplotlib as mpl
import matplotlib.pyplot as plt

fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(16,12));
community_frame["size"].plot(kind="bar", title="Communities and Sizes")
ax.set_xticklabels(community_frame.index);
plt.show()

Example Python User Interface

4-60 User's Guide and Reference

The preceding example connects to an Apache HBase, prints basic information
about the vertices and edges, gets an in-memory analyst, computes the number of
triangles, performs community detection, and finally plots out in a bar chart
communities and their sizes.

For detailed information about this example Python interface, see the following
directory under the installation home:

property_graph/examples/pyopg/doc/

Example Python User Interface

Using Property Graphs in a Big Data Environment 4-61

Example Python User Interface

4-62 User's Guide and Reference

5
Using In-Memory Analytics

This chapter provides examples using In-Memory Analytics (also referred to as
Property Graph In-Memory Analytics, and often abbreviated as PGX in the Javadoc,
command line, path descriptions, error messages, and examples). It contains the
following major topics:

• Reading a Graph into Memory

• Reading Custom Graph Data

• Storing Graph Data on Disk

• Executing Built-in Algorithms

• Creating Subgraphs

• Deploying to Jetty

• Deploying to Apache Tomcat

• Deploying to Oracle WebLogic Server

• Connecting to the In-Memory Analytics Server

• Reading and Storing Data in HDFS

• Running In-Memory Analytics as a YARN Application

5.1 Reading a Graph into Memory
This topic provides an example of reading graph interactively into memory using the
shell interface. These are the major steps:

1. Connecting to an In-Memory Analytics Server Instance

2. Using the Shell Help (as needed)

3. Providing Graph Metadata in a Configuration File

4. Reading Graph Data into Memory

5.1.1 Connecting to an In-Memory Analytics Server Instance
To start the In-Memory Analytics shell:

1. Open a terminal session on the system where property graph support is installed.

2. Either start a local (embedded) In-Memory Analytics instance or connect to a
remote In-Memory Analytics instance

Using In-Memory Analytics 5-1

• Java example of starting a local (embedded) instance:

import java.util.Map;
import java.util.HashMap;
import oracle.pgx.api.*;
import oracle.pgx.config.PgxConfig.Field;

String url = Pgx.EMBEDDED_URL; // local JVM
ServerInstance instance = Pgx.getInstance(url);
instance.startEngine(); // will use default configuration
PgxSession session = instance.createSession("test");

• Java example of connecting to a remote instance:

import java.util.Map;
import java.util.HashMap;
import oracle.pgx.api.*;
import oracle.pgx.config.PgxConfig.Field;

String url = "http://my-server.com:8080/pgx" // replace with base URL of your
setup
ServerInstance instance = Pgx.getInstance(url);
PgxSession session = instance.createSession("test");

3. In the shell, enter the following commands, but select only one of the commands to
start or connect to the desired type of instance:

cd $PGX_HOME
./bin/pgx --help
./bin/pgx --version

start embedded shell
./bin/pgx

start remote shell
./bin/pgx --base_url http://my-server.com:8080/pgx

For the embedded shell, the output should be similar to the following:

10:43:46,666 [main] INFO Ctrl$2 - >>> PGX engine running.
pgx>

4. Optionally, show the predefined variables:

pgx> instance
==> PGX Server Instance running on embedded mode
pgx> session
==> PGX session pgxShell registered at PGX Server Instance running on embedded
mode
pgx> analyst
==> Analyst for PGX session pgxShell registered at PGX Server Instance running on
embedded mode
pgx>

Examples in some other topics assume that the instance and session variables have
been set as shown here.

If the In-Memory Analytics software is installed correctly, you will see an engine-
running log message and the In-Memory Analytics shell prompt (pgx>):

The variables instance, session, and analyst are ready to use.

Reading a Graph into Memory

5-2 User's Guide and Reference

In the preceding example in this topic, the shell started a local instance because the
pgx command did not specify a remote URL.

5.1.2 Using the Shell Help
The In-Memory Analytics shell provides a help system, which you access using
the :help command.

5.1.3 Providing Graph Metadata in a Configuration File
An example graph is included in the installation directory, under /opt/oracle/
oracle-spatial-graph/property_graph/examples/pgx/graphs/. It uses a
configuration file that describes how In-Memory Analytics reads the graph.

pgx> cat /opt/oracle/oracle-spatial-graph/property_graph/examples/pgx/graphs/
sample.adj.json
===> {
 "uri": "sample.adj",
 "format": "adj_list",
 "node_props": [{
 "name": "prop",
 "type": "integer"
 }],
 "edge_props": [{
 "name": "cost",
 "type": "double"
 }],
 "separator": " "
}

The uri field provides the location of the graph data. This path resolves relative to the
parent directory of the configuration file. When In-Memory Analytics loads the graph,
it searches the examples/graphs directory for a file named sample.adj.

The other fields indicate that the graph data is provided in adjacency list format, and
consists of one node property of type integer and one edge property of type
double.

This is the graph data in adjacency list format:

pgx> cat /opt/oracle/oracle-spatial-graph/property_graph/examples/pgx/graphs/
sample.adj
===> 128 10 1908 27.03 99 8.51
99 2 333 338.0
1908 889
333 6 128 51.09

Figure 5-1 shows a property graph created from the data:

Reading a Graph into Memory

Using In-Memory Analytics 5-3

Figure 5-1 Property Graph Rendered by sample.adj Data

5.1.4 Reading Graph Data into Memory
To read a graph into memory, you must pass the following information:

• The path to the graph configuration file that specifies the graph metadata

• A unique alphanumeric name that you can use to reference the graph

An error results if you previously loaded a different graph with the same name.

Example: Using the Shell to Read a Graph

pgx> graph = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json", "sample");
==> PGX Graph named sample bound to PGX session pgxShell ...
pgx> graph.getNumVertices()
==> 4

Example: Using Java to Read a Graph

import oracle.pgx.api.*;

PgxGraph graph = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json");

The following topics contain additional examples of reading a property graph into
memory:

• Read a Graph Stored in Apache HBase into Memory

• Read a Graph Stored in Oracle NoSQL Database into Memory

• Read a Graph Stored in the Local File System into Memory

5.1.4.1 Read a Graph Stored in Apache HBase into Memory

To read a property graph stored in Apache HBase, you can create a JSON based
configuration file as follows. Note that the quorum, client port, graph name, and other
information must be customized for your own setup.

Reading a Graph into Memory

5-4 User's Guide and Reference

% cat /tmp/my_graph_hbase.json
{
 "format": "pg",
 "db_engine": "hbase",
 "zk_quorum": "scaj31bda07,scaj31bda08,scaj31bda09",
 "zk_client_port": 2181,
 "name": "connections",
 "node_props": [{
 "name": "country",
 "type": "string"
 }],
 "load_edge_label": true,
 "edge_props": [{
 "name": "label",
 "type": "string"
 }, {
 "name": "weight",
 "type": "float"
 }]
}
EOF

With the following command, the property graph connections will be read into
memory:

pgx> session.readGraphWithProperties("/tmp/my_graph_hbase.json", "connections")
==> PGX Graph named connections ...

Note that when dealing with a large graph, it may become necessary to tune
parameters like number of IO workers, number of workers for analysis, task timeout,
and others. You can find and change those parameters in the following directory
(assume the installation home is /opt/oracle/oracle-spatial-graph).

/opt/oracle/oracle-spatial-graph/property_graph/pgx/conf

5.1.4.2 Read a Graph Stored in Oracle NoSQL Database into Memory

To read a property graph stored in Oracle NoSQL Database, you can create a JSON
based configuration file as follows. Note that the hosts, store name, graph name, and
other information must be customized for your own setup.

% cat /tmp/my_graph_nosql.json
{
 "format": "pg",
 "db_engine": "nosql",
 "hosts": [
 "zathras01:5000"
],
 "store_name": "kvstore",
 "name": "connections",
 "node_props": [{
 "name": "country",
 "type": "string"
 }],
 "load_edge_label": true,
 "edge_props": [{
 "name": "label",
 "type": "string"
 }, {
 "name": "weight",
 "type": "float"

Reading a Graph into Memory

Using In-Memory Analytics 5-5

 }]
}

Then, read the configuration file into memory. The following example snippet read the
file into memory, generates an undirected graph (named U) from the original data, and
counts the number of triangles.

pgx> g = session.readGraphWithProperties("/tmp/my_graph_nosql.json", "connections")
pgx> analyst.countTriangles(g, false)
==> 8

5.1.4.3 Read a Graph Stored in the Local File System into Memory

The following command uses the configuration file from “Providing Graph Metadata
in a Configuration File” and the name my-graph:

pgx> g = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json", "my-graph")

5.2 Reading Custom Graph Data
You can read your own custom graph data. This example creates a graph, alters it, and
shows how to read it properly. This graph uses the adjacency list format, but In-
Memory Analytics supports several graph formats.

The main steps are:

1. Creating a Simple Graph File

2. Adding a Vertex Property

3. Using Strings as Vertex Identifiers

4. Adding an Edge Property

5.2.1 Creating a Simple Graph File
This example creates a small, simple graph in adjacency list format with no vertex or
edge properties. Each line contains the vertex (node) ID, followed by the vertex IDs to
which iits outgoing edges point:

1 2
2 3 4
3 4
4 2

In this list, a single space separates the individual tokens. In-Memory Analytics
supports other separators, which you can specify in the graph configuration file.

Figure 5-2 shows the data rendered as a property graph with 4 vertices and 5 edges.
The edge from vertex 2 to vertex 4 points in both directions.

Reading Custom Graph Data

5-6 User's Guide and Reference

Figure 5-2 Simple Custom Property Graph

Reading a graph into In-Memory Analytics requires a graph configuration. You can
provide the graph configuration using either of these methods:

• Write the configuration settings in JSON format into a file

• Using a Java GraphConfigBuilder object.

This example shows both methods.

JSON Configuration

{
 "uri": "graph.adj",
 "format":"adj_list",
 "separator":" "
}

Java Configuration

import oracle.pgx.config.FileGraphConfig;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfigBuilder;
FileGraphConfig config = GraphConfigBuilder
 .forFileFormat(Format.ADJ_LIST)
 .setUri("graph.adj")
 .setSeparator(" ")
 .build();

5.2.2 Adding a Vertex Property
The graph in “Creating a Simple Graph File” consists of vertices and edges, without
vertex or edge properties. Vertex properties are positioned directly after the source
vertex ID in each line. The graph data looks like this after a double vertex (node)
property is added to the graph:

1 0.1 2
2 2.0 3 4
3 0.3 4
4 4.56789 2

Reading Custom Graph Data

Using In-Memory Analytics 5-7

Note:

In-Memory Analytics supports only homogeneous graphs, in which all
vertices have the same number and type of properties.

For In-Memory Analytics to read the modified data file, you must add a vertex node)
property in the configuration file or the builder code. The following examples provide
a descriptive name for the property and set the type to double.

JSON Configuration

{
 "uri": "graph.adj",
 "format":"adj_list",
 "separator":" ",
 "node_props":[{
 "name":"double-prop",
 "type":"double"
 }]
}

Java Configuration

import oracle.pgx.common.types.PropertyType;
import oracle.pgx.config.FileGraphConfig;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfigBuilder;

FileGraphConfig config = GraphConfigBuilder.forFileFormat(Format.ADJ_LIST)
 .setUri("graph.adj")
 .setSeparator(" ")
 .addNodeProperty("double-prop", PropertyType.DOUBLE)
 .build();

5.2.3 Using Strings as Vertex Identifiers
The previous examples used integer vertex (node) IDs. The default in In-Memory
Analytics is integer vertex IDs, but you can define a graph to use string vertex IDs
instead.

This data file uses "node 1", "node 2", and so forth instead of just the digit:

"node 1" 0.1 "node 2"
"node 2" 2.0 "node 3" "node 4"
"node 3" 0.3 "node 4"
"node 4" 4.56789 "node 2"

Again, you must modify the graph configuration to match the data file:

JSON Configuration

{
 "uri": "graph.adj",
 "format":"adj_list",
 "separator":" ",
 "node_props":[{
 "name":"double-prop",
 "type":"double"
 }],
 "node_id_type":"string"
}

Reading Custom Graph Data

5-8 User's Guide and Reference

Java Configuration

import oracle.pgx.common.types.IdType;
import oracle.pgx.common.types.PropertyType;
import oracle.pgx.config.FileGraphConfig;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfigBuilder;

FileGraphConfig config = GraphConfigBuilder.forFileFormat(Format.ADJ_LIST)
 .setUri("graph.adj")
 .setSeparator(" ")
 .addNodeProperty("double-prop", PropertyType.DOUBLE)
 .setNodeIdType(IdType.STRING)
 .build();

Note:

string vertex IDs consume much more memory than integer vertex IDs.

Any single or double quotes inside the string must be escaped with a
backslash (\).

Newlines (\n) inside strings are not supported.

5.2.4 Adding an Edge Property
This example adds an edge property of type string to the graph. The edge properties
are positioned after the destination vertex (node) ID.

"node1" 0.1 "node2" "edge_prop_1_2"
"node2" 2.0 "node3" "edge_prop_2_3" "node4" "edge_prop_2_4"
"node3" 0.3 "node4" "edge_prop_3_4"
"node4" 4.56789 "node2" "edge_prop_4_2"

The graph configuration must match the data file:

JSON Configuration

{
 "uri": "graph.adj",
 "format":"adj_list",
 "separator":" ",
 "node_props":[{
 "name":"double-prop",
 "type":"double"
 }],
 "node_id_type":"string",
 "edge_props":[{
 "name":"edge-prop",
 "type":"string"
 }]
}

Java Configuration

import oracle.pgx.common.types.IdType;
import oracle.pgx.common.types.PropertyType;
import oracle.pgx.config.FileGraphConfig;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfigBuilder;

Reading Custom Graph Data

Using In-Memory Analytics 5-9

FileGraphConfig config = GraphConfigBuilder.forFileFormat(Format.ADJ_LIST)
 .setUri("graph.adj")
 .setSeparator(" ")
 .addNodeProperty("double-prop", PropertyType.DOUBLE)
 .setNodeIdType(IdType.STRING)
 .addEdgeProperty("edge-prop", PropertyType.STRING)
 .build();

5.3 Storing Graph Data on Disk
After reading a graph into memory using either Java or the Shell, you can store it on
disk in different formats. You can then use the stored graph data as input to In-
Memory Analytics at a later time.

Storing graphs over HTTP/REST is currently not supported.

The options include:

• Storing the Results of Analysis in a Vertex Property

• Storing a Graph in Edge-List Format on Disk

5.3.1 Storing the Results of Analysis in a Vertex Property
This example reads a graph into memory and analyzes it using the Pagerank
algorithm. This analysis creates a new vertex property to store the PageRank values.

Using the Shell to Run PageRank

pgx> g = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json", "my-graph")
==> ...
pgx> rank = analyst.pagerank(g, 0.001, 0.85, 100)

Using Java to Run PageRank

PgxGraph g = session.readGraphWithProperties("/opt/oracle/oracle-spatial-graph/
property_graph/examples/pgx/graphs/sample.adj.json", "my-graph");
VertexProperty<Integer, Double> rank = session.createAnalyst().pagerank(g, 0.001,
0.85, 100);

5.3.2 Storing a Graph in Edge-List Format on Disk
This example stores the graph, the result of the Pagerank analysis, and all original
edge properties as a file in edge-list format on disk.

To store a graph, you must specify:

• The graph format

• A path where the file will be stored

• The properties to be stored. Specify VertexProperty.ALL or EdgeProperty.ALL to
store all properties, or VertexProperty.NONE or EdgePropery.NONE to store no
properties. To specify individual properties, pass in the VertexProperty or /
EdgeProperty objects you want to store.

• A flag that indicates whether to overwrite an existing file with the same name

Storing Graph Data on Disk

5-10 User's Guide and Reference

The following examples store the graph data in /tmp/sample_pagerank.elist,
with the /tmp/sample_pagerank.elist.json configuration file. The return value
is the graph configuration stored in the file. You can use it to read the graph again.

Using the Shell to Store a Graph

pgx> config = g.store(Format.EDGE_LIST, "/tmp/sample_pagerank.elist", [rank],
EdgeProperty.ALL, false)
==> {"node_props":[{"name":"session-12kta9mj-vertex-prop-
double-2","type":"double"}],"error_handling":{},"node_id_type":"integer","uri":"/tmp/
g.edge","loading":{},"edge_props":
[{"name":"cost","type":"double"}],"format":"edge_list"}

Using Java to Store a Graph

import oracle.pgx.api.*;
import oracle.pgx.config.*;

FileGraphConfig config = g.store(Format.EDGE_LIST, "/tmp/sample_pagerank.elist",
Collections.singletonList(rank), EdgeProperty.ALL, false);

5.4 Executing Built-in Algorithms
In-Memory Analytics contains a set of built-in algorithms that are available as Java
APIs. This section describes the use of the in-memory analytics using Triangle
Counting and Pagerank analytics as examples.

• About In-Memory Analytics

• Running the Triangle Counting Algorithm

• Running the Pagerank Algorithm

5.4.1 About In-Memory Analytics
In-Memory Analytics contains a set of built-in algorithms that are available as Java
APIs. The details of the APIs are documented in the Javadoc that comes with the
product (/opt/oracle/oracle-spatial-graph/property_graph/doc/pgx
by default) in the oracle.pgx.api.algorithms package. Specifically, see the
BuiltinAlgorithms interface Method Summary for a list of the supported in-
memory analytics.

For example, this is the Pagerank procedure signature:

/**
 * Classic pagerank algorithm. Time complexity: O(E * K) with E = number of edges,
K is a given constant (max
 * iterations)
 *
 * @param graph
 * graph
 * @param e
 * maximum error for terminating the iteration
 * @param d
 * damping factor
 * @param max
 * maximum number of iterations
 * @return Vertex Property holding the result as a double
 */
 public <ID extends Comparable<ID>> VertexProperty<ID, Double> pagerank(PgxGraph
graph, double e, double d, int max);

Executing Built-in Algorithms

Using In-Memory Analytics 5-11

In contrast, the following is the In-Memory Analytics API for Pagerank:

5.4.2 Running the Triangle Counting Algorithm
For triangle counting, the sortByDegree boolean parameter of countTriangles()
allows you to control whether the graph should first be sorted by degree (true) or not
(false). If true, more memory will be used, but the algorithm will run faster;
however, if your graph is very large, you might want to turn this optimization off to
avoid running out of memory.

Using the Shell to Run Triangle Counting

pgx> analyst.countTriangles(graph, true)
==> 1

Using Java to Run Triangle Counting

import oracle.pgx.api.*;

Analyst analyst = session.createAnalyst();
long triangles = analyst.countTriangles(graph, true);

The algorithm finds one triangle in the sample graph.

Tip:

When using the In-Memory Analytics Shell, you can increase the amount of
log output during execution by changing the logging level. See information
about the :loglevel command with :h :loglevel.

5.4.3 Running the Pagerank Algorithm
Pagerank computes a rank value between 0 and 1 for each vertex (node) in the graph
and stores the values in a double property. The algorithm therefore creates a vertex
property of type double for the output.

In In-Memory Analytics, there are two types of vertex and edge properties:

• Persistent Properties: Properties that are loaded with the graph from a data source
are fixed, in-memory copies of the data on disk, and are therefore persistent.
Persistent properties are read-only, immutable and shared between sessions.

• Transient Properties: Values can only be written to transient properties, which are
session private. You can create transient properties by alling
createVertexProperty and createEdgeProperty() on PgxGraph objects.

This example obtains the top three vertices with the highest Pagerank values. It uses a
transient vertex property of type double to hold the computed Pagerank values. The
Pagerank algorithm uses a maximum error of 0.001, a damping factor of 0.85, and a
maximum number of 100 iterations.

Using the Shell to Run Pagerank

pgx> rank = analyst.pagerank(graph, 0.001, 0.85, 100);
==> ...
pgx> rank.getTopKValues(3)
==> 128=0.1402019732468347
==> 333=0.12002296283541904
==> 99=0.09708583862990475

Executing Built-in Algorithms

5-12 User's Guide and Reference

Using Java to Run Pagerank

import java.util.Map.Entry;
import oracle.pgx.api.*;

Analyst analyst = session.createAnalyst();
VertexProperty<Integer, Double> rank = analyst.pagerank(graph, 0.001, 0.85, 100);
for (Entry<Integer, Double> entry : rank.getTopKValues(3)) {
 System.out.println(entry.getKey() + "=" entry.getValue());
}

5.5 Creating Subgraphs
You can create subgraphs based on a loaded graph. You can use filter expressions or
create bipartite subgraphs based on a vertex (node) collection that specifies the left set
of the bipartite graph.

• About Filter Expressions

• Using a Simple Filter to Create a Subgraph

• Using a Complex Filter to Create a Subgraph

• Using a Vertex Set to Create a Bipartite Subgraph

For information about reading a graph into memory, see Reading Graph Data into
Memory.

5.5.1 About Filter Expressions
Filter expressions are expressions that are evaluated for each edge. The expression can
define predicates that an edge must fulfil to be contained in the result, in this case a
subgraph.

Consider the graph in Figure 5-1, which consists of four vertices (nodes) and four
edges. For an edge to match the filter expression src.prop == 10, the source vertex
prop property must equal 10. Two edges match that filter expression, as shown in
Figure 5-3.

Figure 5-3 Edges Matching src.prop == 10

Creating Subgraphs

Using In-Memory Analytics 5-13

Figure 5-4 shows the graph that results when the filter is applied. The filter excludes
the edges associated with vertex 333, and the vertex itself.

Figure 5-4 Graph Created by the Simple Filter

Using filter expressions to select a single vertex or a set of vertices is difficult. For
example, selecting only the vertex with the property value 10 is impossible, because
the only way to match the vertex is to match an edge where 10 is either the source or
destination property value. However, when you match an edge you automatically
include the source vertex, destination vertex, and the edge itself in the result.

5.5.2 Using a Simple Filter to Create a Subgraph
The following examples create the subgraph described in “About Filter Expressions”.

Using the Shell to Create a Subgraph

subgraph = graph.filter(new VertexFilter("vertex.prop == 10"))

Using Java to Create a Subgraph

import oracle.pgx.api.*;
import oracle.pgx.api.filter.*;

PgxGraph graph = session.readGraphWithProperties(...);
PgxGraph subgraph = graph.filter(new VertexFilter("vertex.prop == 10"));

5.5.3 Using a Complex Filter to Create a Subgraph
This example uses a slightly more complex filter. It uses the outDegree function,
which calculates the number of outgoing edges for an identifier (source src or
destination dst). The following filter expression matches all edges with a cost
property value greater than 50 and a destination vertex (node) with an outDegree
greater than 1.

dst.outDegree() > 1 && edge.cost > 50

One edge in the sample graph matches this filter expression, as shown in Figure 5-5.

Creating Subgraphs

5-14 User's Guide and Reference

Figure 5-5 Edges Matching the outDegree Filter

Figure 5-6 shows the graph that results when the filter is applied. The filter excludes
the edges associated with vertixes 99 and 1908, and so excludes those vertices also.

Figure 5-6 Graph Created by the outDegree Filter

5.5.4 Using a Vertex Set to Create a Bipartite Subgraph
You can create a bipartite subgraph by specifying a set of vertices (nodes), which are
used as the left side. A bipartite subgraph has edges only between the left set of
vertices and the right set of vertices. There are no edges within those sets, such as
between two nodes on the left side. In In-Memory Analytics, vertices that are isolated
because all incoming and outgoing edges were deleted are not part of the bipartite
subgraph.

The following figure shows a bipartite subgraph. No properties are shown.

Creating Subgraphs

Using In-Memory Analytics 5-15

The following examples create a bipartite subgraph from the simple graph created in
Figure 5-1. They create a vertex collection and fill it with the vertices for the left side.

Using the Shell to Create a Bipartite Subgraph

pgx> s = graph.createVertexSet()
==> ...
pgx> s.addAll([graph.getVertex(333), graph.getVertex(99)])
==> ...
pgx> s.size()
==> 2
pgx> bGraph = graph.bipartiteSubGraphFromLeftSet(s)
==> PGX Bipartite Graph named sample-sub-graph-4

Using Java to Create a Bipartite Subgraph

import oracle.pgx.api.*;

VertexSet<Integer> s = graph.createVertexSet();
s.addAll(graph.getVertex(333), graph.getVertex(99));
BipartiteGraph bGraph = graph.bipartiteSubGraphFromLeftSet(s);

When you create a subgraph, In-Memory Analytics automatically creates a Boolean
vertex (node) property that indicates whether the vertex is on the left side. You can
specify a unique name for the property.

The resulting bipartite subgraph looks like this:

Creating Subgraphs

5-16 User's Guide and Reference

Vertex 1908 is excluded from the bipartite subgraph. The only edge that connected
that vertex extended from 128 to 1908. The edge was removed, because it violated the
bipartite properties of the subgraph. Vertex 1908 had no other edges, and so was
removed also.

5.6 Deploying to Jetty
You can deploy In-Memory Analytics to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic. This example shows how to deploy In-Memory Analytics as a web
application with Eclipse Jetty.

1. Copy the In-Memory Analytics web application archive (WAR) file into the Jetty
webapps directory:

cd $PGX_HOME
cp $PGX_HOME/webapp/pgx-webapp-1.0.0-for-cdh5.2.1.war $JETTY_HOME/webapps/pgx.war

2. Set up a security realm within Jetty that specifies where it can find the user names
and passwords. To add the most basic security realm, which reads the credentials
from a file, add this snippet to $JETTY_HOME/etc/jetty.xml:

<Call name="addBean">
 <Arg>
 <New class="org.eclipse.jetty.security.HashLoginService">
 <Set name="name">PGX-Realm</Set>
 <Set name="config">
 etc/realm.properties
 </Set>
 <Set name="refreshInterval">0</Set>
 </New>
 </Arg>
</Call>

This snippet instructs Jetty to use the simplest, in-memory login service it
supports, the HashLoginService. This service uses a configuration file that
stores the user names, passwords, and roles.

3. Add the users to $JETTY_HOME/etc/realm.properties in the following
format:

username: password, role

For example, this line adds user SCOTT, with password TIGER and the USER role.

scott: tiger, USER

4. Ensure that port 8080 is not already in use, and then start Jetty:

Deploying to Jetty

Using In-Memory Analytics 5-17

cd $JETTY_HOME
java -jar start.jar

5. Verify that Jetty is working, using the appropriate credentials for your
installation:

cd $PGX_HOME
./bin/pgx --base_url http://scott:tiger@localhost:8080/pgx

6. (Optional) Modify the In-Memory Analytics configuration files.

The configuration file (pgx.conf) and the logging parameters (log4j.xml) for
the In-Memory Analytics engine are in the WAR file under WEB-INF/classes.
Restart the server to enable the changes.

See Also:

The Jetty documentation for configuration and use at

http://eclipse.org/jetty/documentation/

• About the Authentication Mechanism

5.6.1 About the Authentication Mechanism
The In-Memory Analytics web deployment uses BASIC Auth by default. You should
change to a more secure authentication mechanism for a production deployment.

To change the authentication mechanism, modify the security-constraint
element of the web.xml deployment descriptor in the web application archive (WAR)
file.

5.7 Deploying to Apache Tomcat
You can deploy In-Memory Analytics to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic. This example shows how to deploy In-Memory Analytics as a web
application with Apache Tomcat.

In-Memory Analytics ships with BASIC Auth enabled, which requires a security
realm. Tomcat supports many different types of realms. This example configures the
simplest one, MemoryRealm. See the Tomcat Realm Configuration How-to for
information about the other types.

1. Copy the In-Memory Analytics WAR file into the Tomcat webapps directory. For
example:

cd $PGX_HOME
cp $PGX_HOME/webapp/pgx-webapp-1.0.0-for-cdh5.2.1.war $CATALINA_HOME/webapps/
pgx.war

2. Open $CATALINA_HOME/conf/server.xml in an editor and add the following
realm class declaration under the <Engine> element:

<Realm className="org.apache.catalina.realm.MemoryRealm" />

3. Open CATALINA_HOME/conf/tomcat-users.xml in an editor and define a user
for the USER role. Replace scott and tiger in this example with an appropriate
user name and password:

Deploying to Apache Tomcat

5-18 User's Guide and Reference

http://eclipse.org/jetty/documentation/

<role rolename="USER" />
<user username="scott" password="tiger" roles="USER" />

4. Ensure that port 8080 is not already in use.

5. Start Tomcat:

cd $CATALINA_HOME
./bin/startup.sh

6. Verify that Tomcat is working:

cd $PGX_HOME
./bin/pgx --base_url http://scott:tiger@localhost:8080/pgx

Note:

Oracle recommends BASIC Auth only for testing. Use stronger
authentication mechanisms for all other types of deployments.

See Also:

The Tomcat documentation at

http://tomcat.apache.org/tomcat-7.0-doc/

5.8 Deploying to Oracle WebLogic Server
You can deploy In-Memory Analytics to Eclipse Jetty, Apache Tomcat, or Oracle
WebLogic Server. This example shows how to deploy In-Memory Analytics as a web
application with Oracle WebLogic Server.

• Installing Oracle WebLogic Server

• Deploying In-Memory Analytics

• Verifying That the Server Works

5.8.1 Installing Oracle WebLogic Server
To download and install the latest version of Oracle WebLogic Server, see

http://www.oracle.com/technetwork/middleware/weblogic/
documentation/index.html

5.8.2 Deploying In-Memory Analytics
To deploy In-Memory Analytics to Oracle WebLogic, use commands like the
following. Substitute your administrative credentials and WAR file for the values
shown in this example:

cd $MW_HOME/user_projects/domains/mydomain
. bin/setDomainEnv.sh
java weblogic.Deployer -adminurl http://localhost:7001 -username username -password
password -deploy -upload $PGX_HOME/lib/server/pgx-webapp-0.9.0.war

If the script runs successfully, you will see a message like this one:

Deploying to Oracle WebLogic Server

Using In-Memory Analytics 5-19

http://tomcat.apache.org/tomcat-7.0-doc/
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html
http://www.oracle.com/technetwork/middleware/weblogic/documentation/index.html

Target state: deploy completed on Server myserver

5.8.3 Verifying That the Server Works
Verify that you can connect to the server:

$PGX_HOME/bin/pgx --base_url scott:tiger123@localhost:7001/pgx

5.9 Connecting to the In-Memory Analytics Server
After property graph in-memory analytics is installed in a Hadoop cluster -- or on a
client system without Hadoop as a web application on Eclipse Jetty, Apache Tomcat,
or Oracle WebLogic -- you can connect to the in-memory analytics server.

• Connecting with the In-Memory Analytics Shell

• Connecting with Java

• Connecting with an HTTP Request

5.9.1 Connecting with the In-Memory Analytics Shell
The simplest way to connect to an In-Memory Analytics instance is to specify the base
URL of the server. The following base URL can connect the SCOTT user to the local
instance listening on port 8080:

http://scott:tiger@localhost:8080/pgx

To start the In-Memory Analytics shell with this base URL, you use the --base_url
command line argument

cd $PGX_HOME
./bin/pgx --base_url http://scott:tiger@localhost:8080/pgx

You can connect to a remote instance the same way. However, In-Memory Analytics
currently does not provide remote support for the Control API.

5.9.1.1 About Logging HTTP Requests

The In-Memory Analytics shell suppresses all debugging messages by default. To see
which HTTP requests are executed, set the log level for oracle.pgx to DEBUG, as
shown in this example:

pgx> :loglevel oracle.pgx DEBUG
===> log level of oracle.pgx logger set to DEBUG
pgx> session.readGraphWithProperties("sample_http.adj.json", "sample")
10:24:25,056 [main] DEBUG RemoteUtils - Requesting POST http://scott:tiger@localhost:
8080/pgx/core/session/session-shell-6nqg5dd/graph HTTP/1.1 with payload
{"graphName":"sample","graphConfig":{"uri":"http://path.to.some.server/pgx/
sample.adj","separator":" ","edge_props":
[{"type":"double","name":"cost"}],"node_props":
[{"type":"integer","name":"prop"}],"format":"adj_list"}}
10:24:25,088 [main] DEBUG RemoteUtils - received HTTP status 201
10:24:25,089 [main] DEBUG RemoteUtils - {"futureId":"87d54bed-bdf9-4601-98b7-
ef632ce31463"}
10:24:25,091 [pool-1-thread-3] DEBUG PgxRemoteFuture$1 - Requesting GET http://
scott:tiger@localhost:8080/pgx/future/session/session-shell-6nqg5dd/result/87d54bed-
bdf9-4601-98b7-ef632ce31463 HTTP/1.1
10:24:25,300 [pool-1-thread-3] DEBUG RemoteUtils - received HTTP status 200
10:24:25,301 [pool-1-thread-3] DEBUG RemoteUtils - {"stats":{"loadingTimeMillis":
0,"estimatedMemoryMegabytes":0,"numEdges":4,"numNodes":

Connecting to the In-Memory Analytics Server

5-20 User's Guide and Reference

4},"graphName":"sample","nodeProperties":{"prop":"integer"},"edgeProperties":
{"cost":"double"}}

This example requires that the graph URI points to a file that the In-Memory Analytics
server can access using HTTP or HDFS.

5.9.2 Connecting with Java
You can specify the base URL when you initialize In-Memory Analytics using Java. An
example is as follows. A URL to an In-Memory Analytics server is provided to the
getInMemAnalyst API call.

import oracle.pg.nosql.*;
import oracle.pgx.api.*;

PgNosqlGraphConfig cfg =
GraphConfigBuilder.forNosql().setName("mygraph").setHosts(...).build();
OraclePropertyGraph opg = OraclePropertyGraph.getInstance(cfg);
ServerInstance remoteInstance = Pgx.getInstance("http://scott:tiger@hostname:port/
pgx");
PgxSession session = remoteInstance.createSession("my-session");

PgxGraph graph = session.readGraphWithProperties(opg.getConfig());

5.9.3 Connecting with an HTTP Request
The In-Memory Analytics shell uses HTTP requests to communicate with the In-
Memory Analytics server. You can use the same HTTP endpoints directly or use them
to write your own client library.

This example uses HTTP to call create session:

HTTP POST 'http://scott:tiger@localhost:8080/pgx/core/session' with payload
'{"source":"shell"}'
Response: {"sessionId":"session-shell-42v3b9n7"}

The call to create session returns a session identifier. Most HTTP calls return an
In-Memory Analytics UUID, which identifies the resource that holds the result of the
request. Many In-Memory Analytics requests take a while to complete, but you can
obtain a handle to the result immediately. Using that handle, an HTTP GET call to a
special endpoint provides the result of the request (or block, if the request is not
complete).

Most interactions with In-Memory Analytics with HTTP look like this example:

// any request, with some payload
HTTP POST 'http://scott:tiger@localhost:8080/pgx/core/session/session-shell-42v3b9n7/
graph' with payload '{"graphName":"sample","graphConfig":{"edge_props":
[{"type":"double","name":"cost"}],"format":"adj_list","separator":" ","node_props":
[{"type":"integer","name":"prop"}],"uri":"http://path.to.some.server/pgx/
sample.adj"}}'
Response: {"futureId":"15fc72e9-42e9-4527-9a31-bd20eb0adafb"}

// get the result using the In-Memory Analytics future UUID.
HTTP GET 'http://scott:tiger@localhost:8080/pgx/future/session/session-
shell-42v3b9n7/result/15fc72e9-42e9-4527-9a31-bd20eb0adafb'
Response: {"stats":{"loadingTimeMillis":0,"estimatedMemoryMegabytes":0,"numNodes":
4,"numEdges":4},"graphName":"sample","nodeProperties":
{"prop":"integer"},"edgeProperties":{"cost":"double"}}

Connecting to the In-Memory Analytics Server

Using In-Memory Analytics 5-21

5.10 Reading and Storing Data in HDFS
In-Memory Analytics supports the Hadoop Distributed File System (HDFS). This
example shows how to read and access graph data in HDFS using In-Memory
Analytics APIs.

Graph configuration files are parsed on the client side. The graph data and
configuration files must be stored in HDFS. You must install a Hadoop client on the
same computer as In-Memory Analytics. See Oracle Big Data Appliance Software
User's Guide.

Graph configuration files are parsed on the client side. The graph data and
configuration files must be stored in HDFS. You must install a Hadoop client on the
same computer as In-Memory Analytics. See Providing Remote Client Access to CDH
in Oracle Big Data Appliance Software User's Guide.

Note:

The Parallel In-Memory Analytics engine runs in memory on one node of the
Hadoop cluster only.

• Loading Data from HDFS

• Storing Graph Snapshots in HDFS

• Compiling and Running a Java Application in Hadoop

5.10.1 Loading Data from HDFS
This example copies the sample.adj graph data and its configuration file into HDFS,
and then loads it into memory.

1. Copy the graph data into HDFS:

cd $PGX_HOME
hadoop fs -mkdir -p /user/pgx
hadoop fs -copyFromLocal examples/graphs/sample.adj /user/pgx

2. Edit the uri field of the graph configuration file to point to an HDFS resource:

{
 "uri": "hdfs:/user/pgx/sample.adj",
 "format": "adj_list",
 "node_props": [{
 "name": "prop",
 "type": "integer"
 }],
 "edge_props": [{
 "name": "cost",
 "type": "double"
 }],
 "separator": " "
}

3. Copy the configuration file into HDFS:

cd $PGX_HOME
hadoop fs -copyFromLocal examples/graphs/sample.adj.json /user/pgx

Reading and Storing Data in HDFS

5-22 User's Guide and Reference

4. Load the sample graph from HDFS into In-Memory Analytics, as shown in the
following examples.

Using the Shell to Load the Graph from HDFS

g = session.readGraphWithProperties("hdfs:/user/pgx/sample.adj.json");
===> {
 "graphName" : "G",
 "nodeProperties" : {
 "prop" : "integer"
 },
 "edgeProperties" : {
 "cost" : "double"
 },
 "stats" : {
 "loadingTimeMillis" : 628,
 "estimatedMemoryMegabytes" : 0,
 "numNodes" : 4,
 "numEdges" : 4
 }
}

Using Java to Load the Graph from HDFS

import oracle.pgx.api.*;
PgxGraph g = session.readGraphWithProperties("hdfs:/user/pgx/sample.adj.json");

5.10.2 Storing Graph Snapshots in HDFS
The In-Memory Analytics binary format (.pgb) is a proprietary binary graph format
for In-Memory Analytics. Fundamentally, a .pgb file is a binary dump of a graph and
its property data, and it is efficient for In-Memory Analytics operations. You can use
this format to quickly serialize a graph snapshot to disk and later read it back into
memory.

You should not alter an existing .pgb file.

The following examples store the sample graph, currently in memory, in PGB format
in HDFS.

Using the Shell to Store a Graph in HDFS

g.store(Format.PGB, "hdfs:/user/pgx/sample.pgb", VertexProperty.ALL,
EdgeProperty.ALL, true)

Using Java to Store a Graph in HDFS

import oracle.pgx.config.GraphConfig;
import oracle.pgx.api.*;

GraphConfig pgbGraphConfig = g.store(Format.PGB, "hdfs:/user/pgx/sample.pgb",
VertexProperty.ALL, EdgeProperty.ALL, true);

To verify that the PGB file was created, list the files in the /user/pgx HDFS
directory:

hadoop fs -ls /user/pgx

5.10.3 Compiling and Running a Java Application in Hadoop
The following is the HdfsExample Java class for the previous examples:

Reading and Storing Data in HDFS

Using In-Memory Analytics 5-23

import oracle.pgx.api.Pgx;
import oracle.pgx.api.PgxGraph;
import oracle.pgx.api.PgxSession;
import oracle.pgx.api.ServerInstance;
import oracle.pgx.config.Format;
import oracle.pgx.config.GraphConfig;
import oracle.pgx.config.GraphConfigFactory;

public class HdfsDemo {
 public static void main(String[] mainArgs) throws Exception {
 ServerInstance instance = Pgx.getInstance(Pgx.EMBEDDED_URL);
 instance.startEngine();
 PgxSession session = Pgx.createSession("my-session");
 GraphConfig adjConfig = GraphConfigFactory.forAnyFormat().fromHdfs("/user/pgx/
sample.adj.json");
 PgxGraph graph1 = session.readGraphWithProperties(adjConfig);
 GraphConfig pgbConfig = graph1.store(Format.PGB, "hdfs:/user/pgx/sample.pgb");
 PgxGraph graph2 = session.readGraphWithProperties(pgbConfig);
 System.out.println("graph1 N = " + graph1.getNumVertices() + " E = " +
graph1.getNumEdges());
 System.out.println("graph2 N = " + graph1.getNumVertices() + " E = " +
graph2.getNumEdges());
 }
}

These commands compile the HdfsExample class:

cd $PGX_HOME
mkdir classes
javac -cp ../lib/* HdfsDemo.java -d classes

This command runs the HdfsExample class:

java -cp ../lib/*:conf:classes:$HADOOP_CONF_DIR HdfsDemo

5.11 Running In-Memory Analytics as a YARN Application
In this example you will learn how to start, stop and monitor In-Memory Analytics
servers on a Hadoop cluster via Hadoop NextGen MapReduce (YARN) scheduling.

• Starting and Stopping In-Memory Analytics Services

• Connecting to In-Memory Analytics Services

• Monitoring In-Memory Analytics Services

5.11.1 Starting and Stopping In-Memory Analytics Services
Before you can start In-Memory Analytics as a YARN application, you must configure
the In-Memory Analytics YARN client.

5.11.1.1 Configuring the In-Memory Analytics YARN Client

The In-Memory Analytics distribution contains an example YARN client configuration
file in $PGX_HOME/conf/yarn.conf.

Ensure that all the required fields are set properly. The specified paths must exist in
HDFS, and zookeeper_connect_string must point to a running ZooKeeper port
of the CDH cluster.

Running In-Memory Analytics as a YARN Application

5-24 User's Guide and Reference

5.11.1.2 Starting a New In-Memory Analytics Service

To start a new In-Memory Analytics service on the Hadoop cluster, use the following
command:

yarn jar $PGX_HOME/yarn/pgx-yarn-1.0.0-for-cdh5.2.1.jar

To use a YARN client configuration file other than $PGX_HOME/conf/yarn.conf,
provide the file path:

yarn jar $PGX_HOME/yarn/pgx-yarn-1.0.0-for-cdh5.2.1.jar /path/to/different/yarn.conf

When the service starts, the host name and port of the Hadoop node where the In-
Memory Analytics service launched are displayed.

5.11.1.3 About Long-Running In-Memory Analytics Services

In-Memory Analytics YARN applications are configured by default to time out after a
specified period. If you disable the time out by setting pgx_server_timeout_secs
to 0, the In-Memory Analytics server keeps running until you or Hadoop explicitly
stop it.

5.11.1.4 Stopping In-Memory Analytics Services

To stop a running In-Memory Analytics service:

yarn application -kill appId

In this syntax, appId is the application ID displayed when the service started.

To inspect the logs of a terminated In-Memory Analytics service:

yarn logs -applicationId appId

5.11.2 Connecting to In-Memory Analytics Services
You can connect to In-Memory Analytics services in YARN the same way you connect
to any In-Memory Analytics server. For example, to connect the Shell interface with
the In-Memory Analytics service, use a command like this one:

$PGX_HOME/bin/pgx --base_url username:password@hostname:port

In this syntax, username and password match those specified in the YARN
configuration.

5.11.3 Monitoring In-Memory Analytics Services
To monitor In-Memory Analytics services, click the corresponding YARN application
in the Resource Manager Web UI. By default, the Web UI is located at

http://resource-manager-hostname:8088/cluster

Running In-Memory Analytics as a YARN Application

Using In-Memory Analytics 5-25

Running In-Memory Analytics as a YARN Application

5-26 User's Guide and Reference

6
Using Multimedia Analytics

You can use the multimedia analytics framework in a Big Data environment to
perform facial recognition in videos and images.

• About Multimedia Analytics

• Face Recognition Using the Multimedia Analytics Framework

• Configuration Properties for Multimedia Analytics

• Using the Multimedia Analytics Framework with Third-Party Software

• Displaying Images in Output

6.1 About Multimedia Analytics
The multimedia analytics feature of Oracle Big Data Spatial and Graph provides a
framework for processing video and image data in Apache Hadoop. The framework
enables distributed processing of video and image data. Features of the framework
include:

• APIs to process and analyze video and image data in Apache Hadoop

• Scalable, high speed processing, leveraging the parallelism of Apache Hadoop

• Built-in face recognition using OpenCV

• Ability to install and implement custom video/image processing (for example,
license plate recognition) to use the framework to run in Apache Hadoop

The video analysis framework is installed on Oracle Big Data Appliance if Oracle
Spatial and Graph is licensed, and you can install it on other Hadoop clusters.

6.2 Face Recognition Using the Multimedia Analytics Framework
The multimedia analytics feature comes with built-in face recognition. Face
recognition uses OpenCV libraries, available with the product. This chapter describes
using this face recognition functionality.

Face recognition has two steps:

1. “Training” a model with face images. This step can be run in any Hadoop client or
node.

2. Recognizing faces from input video or images using the training model. This step
is a MapReduce job that runs in a Hadoop cluster.

The training process creates a model stored in a file. This file is used as input for face
recognition from videos or images.

Using Multimedia Analytics 6-1

Topics:

• Training to Detect Faces

• Detecting Faces in Videos

• Detecting Faces in Images

6.2.1 Training to Detect Faces
Training is done using the Java program OrdFaceTrainer, which is part of part of
ordhadoop_multimedia_analytics.jar. Inputs to this program are a set of
images and a label mapping file that maps images to labels. The output is a training
model that is written to a file. (You must not edit this file.)

To train the multimedia analytics feature to detect (recognize) faces, follow these steps.

1. Create a parent directory and subdirectories to store images that are to be
recognized.

Each subdirectory should contain one or more images of one person. A person can
have images in multiple subdirectories, but a subdirectory can have images of
only one person. For example, assume that a parent directory named images
exists where one subdirectory (d1) contains images of a person named Andrew,
and two subdirectories (d2 and d3) contain images of a person named Betty (such
as pictures taken at two different times in two different locations). In this example,
the directories and their contents might be as follows:

• images/d1 contains five images of Andrew.

• images/d2 contains two images of Betty.

• images/d3 contains four images of Betty.

2. Create a mapping file that maps image subdirectories to labels.

A “label” is a numeric ID value to be associated with a person who has images for
recognition. For example, Andrew might be assigned the label value 100, and
Betty might be assigned the label value 101. Each record (line) in the mapping file
must have the following structure:

<subdirectory>,<label-id>,<label-text>

For example:

d1,100,Andrew
d2,101,Betty
d3,101,Betty

3. Set the required configuration properties:

oracle.ord.hadoop.ordfacemodel
oracle.ord.hadoop.ordfacereader
oracle.ord.hadoop.ordsimplefacereader.dirmap
oracle.ord.hadoop.ordsimplefacereader.imagedir

For information about the available properties, see Configuration Properties for
Multimedia Analytics.

4. Set the CLASSPATH. Include the following in the Java CLASSPATH definition.
Replace each asterisk (*) with the actual version number.

Face Recognition Using the Multimedia Analytics Framework

6-2 User's Guide and Reference

$MMA_HOME/lib/ordhadoop-multimedia-analytics.jar
$MMA_HOME/opencv_3.0.0/opencv-300.jar
$HADOOP_HOME/hadoop-common-*.jar
$HADOOP_HOME/hadoop-auth-*.jar
$HADOOP_HOME/commons-lang*.jar
$HADOOP_HOME/commons-logging-*.jar
$HADOOP_HOME/commons-configuration-*.jar
$HADOOP_HOME/commons-collections-*.jar
$HADOOP_HOME/guava-*.jar
$HADOOP_HOME/slf4j-api-*.jar
$HADOOP_HOME/slf4j-log4j12-*.jar
$HADOOP_HOME/log4j-*.jar
$HADOOP_HOME/commons-cli-*.jar
$HADOOP_HOME/protobuf-java-*.jar
$HADOOP_HOME/avro-*.jar
$HADOOP_HOME/hadoop-hdfs-*.jar
$HADOOP_HOME/hadoop-mapreduce-client-core-*.jar

5. Create the training model. Enter a command in the following general form:

java -classpath <…> oracle.ord.hadoop.recognizer.OrdFaceTrainer
<training_config_file.xml>

Note: $MMA_HOME/example has a set of sample files. It includes scripts for
setting the Java CLASSPATH. You can edit the example as needed to create a
training model.

6.2.2 Selecting Faces to be Used for Training
Images used to create the training model should contain only the face, with as little
extra detail around the face as possible. The following are some examples, showing
four images of the same man’s face with different facial expressions.

The selection of images for training is important for accurate matching. The following
guidelines apply:

• The set of images should contain faces with all possible positions and facial
movements, for example, closed eyes, smiles, and so on.

• Try to avoid including images that are very similar.

• If it is necessary to recognize a person with several backgrounds and light
conditions, include images with these backgrounds.

• The number of images to include depends on the variety of movements and
backgrounds expected in the input data.

Face Recognition Using the Multimedia Analytics Framework

Using Multimedia Analytics 6-3

6.2.3 Detecting Faces in Videos
To detect (recognize) faces in videos, you have the following options for video
processing software to transcode video data:

• Use OrdOpenCVFaceRecognizerMulti as the frame processor, along with any
of the frontal face cascade classifiers available with OpenCV.

Haarcascade_frontalface_alt2.xml is a good place to start. You can
experiment with the different cascade classifiers to identify a good fit for your
requirements.

• Use third-party face recognition software.

To perform recognition, follow these steps:

1. Copy the video files (containing video in which you want to recognize faces) to
HDFS.

2. Copy these required files to a shared location accessible by all nodes in the cluster:

• Generated training model

• Mapping file that maps image subdirectories to labels

• Cascade classifier XML file

3. Create the configuration file.

Required configuration parameters:

• oracle.ord.hadoop.inputtype: Type if input data (video or image).

• oracle.ord.hadoop.outputtypes: Format of generated results (JSON/
text/Image).

• oracle.ord.hadoop.ordframegrabber: Get a video frame from the video
data. You can use the Java classes available with the product or you can
provide an implementation for the abstraction.

– OrdJCodecFrameGrabber is available with the product. This class can be
used without any additional steps. See www.jcodec.org for more details on
JCodec.

– OrdFFMPEGFrameGrabber is available with the product. This class
requires installation of FFMPEG libraries. See www.ffmpeg.org for more
details

• oracle.ord.hadoop.ordframeprocessor: Processor to use on the video
frame to recognize faces. You can use the Java classes available with the
product or you can provide an implementation for the abstraction.

• oracle.ord.hadoop.recognizer.classifier: Cascade classifier XML
file.

• oracle.ord.hadoop.recognizer.labelnamefile: Mapping file that
maps image subdirectories to labels.

Optional configuration parameters:

Face Recognition Using the Multimedia Analytics Framework

6-4 User's Guide and Reference

http://www.jcodec.org
http://www.ffmpeg.org

• oracle.ord.hadoop.frameinterval: Time interval (number of seconds)
between frames that are processed. Default: 1.

• oracle.ord.hadoop.numofsplits: Number of splits of the video file on
the Hadoop cluster, with one split analyzed on each node of the Hadoop
cluster. Default: 1.

• oracle.ord.hadoop.recognizer.cascadeclassifier.scalefactor:
Scale factor to be used for matching images used in training with faces
identified in video frames or images. Default: 1.1 (no scaling)

• oracle.ord.hadoop.recognizer.cascadeclassifier.minneighbor:
Determines size of the sliding window to detect face in video frame or image.
Default: 1.

• oracle.ord.hadoop.recognizer.cascadeclassifier.flags:
Determines type of face detection.

• oracle.ord.hadoop.recognizer.cascadeclassifier.minsize:
Smallest bounding box used to detect a face.

• oracle.ord.hadoop.recognizer.cascadeclassifier.maxsize:
Largest bounding box used to detect a face.

• oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfiden
ce: Maximum allowable distance between the detected face and a face in the
model.

• oracle.ord.hadoop.ordframeprocessor.k2: Key class for the
implemented class for OrdFrameProcessor.

• oracle.ord.hadoop.ordframeprocessor.v2: Value class for the
implemented class for OrdFrameProcessor.

4. Set the HADOOP_CLASSPATH.

Ensure that HADOOP_CLASSPATH includes the files listed in Training to Detect
Faces

5. Run the Hadoop job to recognize faces. Enter a command in the following format:

$ hadoop jar $MMA_HOME/lib/orhadoop-multimedia-analytics.jar -conf <conf file>
<hdfs_input_directory_containing_video_data>
<hdfs_output_directory_to_write_results>

The accuracy of detecting faces depends on a variety of factors, including lighting,
brightness, orientation of the face, distance of the face from the camera, and clarity of
the video or image. You should experiment with the configuration properties to
determine the best set of values for your use case. Note that it is always possible to
have false positives (identifing objects that are not faces as faces) and false recognitions
(wrongly labeling a face).

Note: $MMA_HOME/example has a set of sample files. It includes scripts for
setting the Java CLASSPATH. You can edit as needed to submit a job to detect
faces.

Face Recognition Using the Multimedia Analytics Framework

Using Multimedia Analytics 6-5

6.2.4 Detecting Faces in Images
To detect faces in images, copy the images to HDFS. Specify the following property:

<property>
 <name>oracle.ord.hadoop.inputtype</name>
 <value>image</value>
</property>

6.2.5 Examples and Training Materials for Detecting Faces
Several examples and training materials are provided to help you get started detecting
faces.

$MMA_HOME contains these directories:

video/ (contains a sample video file in mp4 and avi formats)
facetrain/
analytics/

facetrain/ contains an example for training. facetrain/config/ contains the
sample configuration files, and facetrain/faces/ contains images to create the
training model, and the mapping file that maps labels to images.

Makefile and trainface.sh provide the choice of using a Makefile or a bach script
to run the training step.

You can create the training model as follows:

$./trainface.sh

The training model will be written to ordfacemodel_bigdata.dat.

For detecting faces in videos, analytics/ contains an example for running a Hadoop
job to detect faces in the input video file. This directory contains conf/ with
configuration files for the example.

Makefile and trainface.sh provide the choice of using a Makefile or a batch
script to submit the Hadoop job.

You can run the job as follows (includes copying the video file to HDFS directory
vinput)

$./runjob.sh

The output of the job will be in the HDFS directory voutput.

6.3 Configuration Properties for Multimedia Analytics
The multimedia analytics framework uses the standard methods for specifying
configuration properties in the hadooop command. You can use the –conf option to
identify configuration files, and the -D option to specify individual properties. This
topic presents reference information about the configuration properties.

Some properties are used for specific tasks. For example, training properties include:

• oracle.ord.hadoop.ordfacereader

• oracle.ord.hadoop.ordsimplefacereader.imagedir

• oracle.ord.hadoop.ordsimplefacereader.dirmap

Configuration Properties for Multimedia Analytics

6-6 User's Guide and Reference

• oracle.ord.hadoop.ordfacemodel

• oracle.ord.hadoop.ordfacereaderconfig

The following are the available configuration properties, listed in alphabetical order.
(All names start with oracle.ord.hadoop.). For each parameter the parameter
name is listed, then information about the parameter.

oracle.ord.hadoop.frameinterval
String.Timestamp interval (in seconds) to extract frames for processing. Allowable
values: positive integers and floating point numbers. Default value: 1. Example:

<property>
 <name>oracle.ord.hadoop.frameinterval</name>
 <value>1</value>
</property>

oracle.ord.hadoop.inputformat
Sring. The InputFormat class name in the framework, which represents the input
file type in the framework. Default value:
oracle.ord.hadoop.OrdVideoInputFormat. Example:

<property>
 <name>oracle.ord.hadoop.inputformat</name>
 <value>oracle.ord.hadoop.OrdVideoInputFormat</value>
</property>

oracle.ord.hadoop.inputtype
String. Type of input data: video or image. Example:

<property>
 <name>oracle.ord.hadoop.inputtype</name>
 <value>video</value>
</property>

oracle.ord.hadoop.numofsplits
Positive integer. Number of the splits of the video files on the Hadoop cluster, with
one split able to be analyzed in each node of the Hadoop cluster. Recommended
value: the number of nodes/processors in the cluster. Default value: 1. Example:

<property>
 <name>oracle.ord.hadoop.numofsplits</name>
 <value>1</value>
</property>

oracle.ord.hadoop.ordfacemodel
String. Name of the file that stores the model created by the training. Example:

<property>
 <name> oracle.ord.hadoop.ordfacemodel </name>
 <value>ordfacemodel_bigdata.dat</value>
</property>

oracle.ord.hadoop.ordfacereader
String. Name of the Java class that reads images used for training the face recognition
model. Example:

<property>
 <name> oracle.ord.hadoop.ordfacereader </name>

Configuration Properties for Multimedia Analytics

Using Multimedia Analytics 6-7

 <value> oracle.ord.hadoop.OrdSimpleFaceReader </value>
</property>

oracle.ord.hadoop.ordfacereaderconfig
String. File containing additional configuration properties for the specific application.
Example:

<property>
 <name> oracle.ord.hadoop.ordfacereaderconfig </name>
 <value>config/ordsimplefacereader_bigdata.xml</value>
</property>

oracle.ord.hadoop.ordframegrabber
String. Name of the Java class that decodes a video file. This is the implemented class
for OrdFrameGrabber, and it is used by the mapper to decode the video file.
Available installed implementations with the product:
oracle.ord.hadoop.OrdJCodecFrameGrabber (the default) and
oracle.ord.hadoop.OrdFFMPEGFrameGrabber (when FFMPEG is installed by
the user). You can add custom implementations. Example:

<property>
 <name>oracle.ord.hadoop.ordframegrabber</name>
 <value>oracle.ord.hadoop.OrdJCodecFrameGrabber</value>
</property>

oracle.ord.hadoop.ordframeprocessor
String. Name of the implemented Java class of interface OrdFrameProcessor, which is
used by the mapper to process the frame and recognize the object of interest. Default
value: oracle.ord.hadoop.mapreduce.OrdOpenCVFaceRecognizerMulti. Example:

<property>
 <name>oracle.ord.hadoop.ordframeprocessor </name>
 <value>oracle.ord.hadoop.mapreduce.OrdOpenCVFaceRecognizerMulti</value>
</property>

oracle.ord.hadoop.ordframeprocessor.k2
String. Java class name, output key class of the implemented class of interface
OrdFrameProcessor. Default value: org.apache.hadoop.io.Text. Example:

<property>
 <name>oracle.ord.hadoop.ordframeprocessor.k2</name>
 <value>org.apache.hadoop.io.Text</value>
</property>

oracle.ord.hadoop.ordframeprocessor.v2
String. Java class name, output value class of the implemented class of interface
OrdFrameProcessor . Default value:
oracle.ord.hadoop.mapreduce.OrdImageWritable. Example:

<property>
 <name>oracle.ord.hadoop.ordframeprocessor.v2 </name>
 <value>oracle.ord.hadoop.mapreduce.OrdImageWritable</value>
</property>

oracle.ord.hadoop.ordoutputprocessor
String. Only only relevant for custom (user-specified) plug-ins: name of the
implemented Java class of interface OrdOutputProcessor that processes the key-
value pair from the map output in the reduce phase. Example:

Configuration Properties for Multimedia Analytics

6-8 User's Guide and Reference

<property>
 <name>oracle.ord.hadoop.ordframeprocessor</name>
 <value>mypackage.MyOutputProcessorClass</value>
</property>

oracle.ord.hadoop.ordsimplefacereader.dirmap
String. Mapping file that maps face labels to directory names and face images.
Example:

<property>
 <name> oracle.ord.hadoop.ordsimplefacereader.dirmap </name>
 <value>faces/bigdata/dirmap.txt</value>
</property>

oracle.ord.hadoop.ordsimplefacereader.imagedir
String. File system directory containing faces used to create a model. This is typically
in a local file system. Example:

<property>
 <name> oracle.ord.hadoop.ordsimplefacereader.imagedir </name>
 <value>faces/bigdata</value>
</property>

oracle.ord.hadoop.outputformat
String. Name of the OutputFormat class, which represents the output file type in the
framework. Default value:
org.apache.hadoop.mapreduce.lib.output.TextOutputFormat. Example:

<property>
 <name>oracle.ord.hadoop.outputformat</name>
 <value> org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; </value>
</property>

oracle.ord.hadoop.outputtype
String. Format of output that contains face labels of identified faces with the time
stamp, location, and confidence of the match: must be json, image, or text.
Example:

<property>
 <name>oracle.ord.hadoop.outputtype</name>
 <value>json</value>
</property>

oracle.ord.hadoop.parameterfile
String. File containing additional configuration properties for the specific job.
Example:

<property>
 <name>oracle.ord.hadoop.parameterfile </name>
 <value>oracle_multimedia_face_recognition.xml</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.flags
String. Use this property to select the type of object detection. Must be
CASCADE_DO_CANNY_PRUNING, CASCADE_SCALE_IMAGE,
CASCADE_FIND_BIGGEST_OBJECT (look only for the largest face), or
CASCADE_DO_ROUGH_SEARCH. . Default: CASCADE_SCALE_IMAGE |
CASCADE_DO_ROUGH_SEARCH. Example:

Configuration Properties for Multimedia Analytics

Using Multimedia Analytics 6-9

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.flags</name>
 <value>CASCADE_SCALE_IMAGE</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence
Floating point value. Specifies how large the distance (difference) between a face in
the model and a face in the input data can be. Larger valuse will give more matches
but might be less accurate (more false positives). Smaller values will give fewer
matches, but be more accurate. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.maxconfidence</name>
 <value>200.0</value>
</property

oracle.ord.hadoop.recognizer.cascadeclassifier.maxsize
String, specifically a pair of values. Specifies the maximum size of the bounding box
for the object detected. If the object is close by, the bounding box is larger; if the object
is far away, like faces on a beach, the bounding box is smaller. Objects with a larger
bounding box than the maximum size are ignored. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.maxsize</name>
 <value>(500,500)</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.minneighbor
Integer. Determines the size of the sliding window used to detect the object in the
input data. Higher values will detect fewer objects but with higher quality. Default
value: 1. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.minneighbor</name>
 <value>1</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.minsize
String, specifically a pair of values. Specifies the minimum size of the bounding box
for the object detected. If the object is close by, the bounding box is larger; if the object
is far away, like faces on a beach, the bounding box is smaller. Objects with a smaller
bounding box than the minimum size are ignored. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.minsize</name>
 <value>(100,100)</value>
</property>

oracle.ord.hadoop.recognizer.cascadeclassifier.scalefactor
Floating pointnumber. Scale factor to be used with the mapping file that maps face
labels to directory names and face images. A value of 1.1 means to perform no scaling
before comparing faces in the run-time input with images stored in subdirectories
during the training process. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.cascadeclassifier.scalefactor</name>
 <value>1.1</value>
</property>

Configuration Properties for Multimedia Analytics

6-10 User's Guide and Reference

oracle.ord.hadoop.recognizer.classifier
String. XML file containing classifiers for face. The feature can be used with any of the
frontal face pre-trained classifiers available with OpenCV. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.classifier</name>
 <value>haarcascade_frontalface_alt2.xml</value>
</property>

oracle.ord.hadoop.recognizer.labelnamefile
String. Mapping file that maps face labels to directory names and face images.
Example:

<property>
 <name> oracle.ord.hadoop.recognizer.labelnamefiler</name>
 <value>haarcascade_frontalface_alt2.xml</value>
</property>

oracle.ord.hadoop.recognizer.modelfile
String. File containing the model generated in the training step. The file must be in a
shared location, accessible by all cluster nodes. Example:

<property>
 <name> oracle.ord.hadoop.recognizer.modelfile</name>
 <value>myface_model.dat</value>
</property>

6.4 Using the Multimedia Analytics Framework with Third-Party Software
You can implement and install custom modules for multimedia decoding and
processing.

You can use a custom video decoder in the framework by implementing the abstract
class oracle.ord.hadoop.decoder.OrdFrameGrabber. See the Javadoc for
additional details. The product includes two implementations of the video decoder
that extend OrdFrameGrabber for JCodec and FFMPEG (requires a separate
installation of FFMPEG).

You can use custom multimedia analysis in the framework by implementing two
abstract classes.

• oracle.ord.hadoop.mapreduce.OrdFrameProcessor<K1,V1,K2,V2
>. The extended class of OrdFrameProcessor is used in the map phase of the
MapReduce job that processes the video frames or images. (K1, V1) is the input
key-value pair types and (K2, V2) is the output key-value pair type. See the Javadoc
for additional details. The product includes an implementation using OpenCV.

•
oracle.ord.hadoop.mapreduce.OrdOutputProcessor<K1,V1,K2,V
2>. The extended class of OrdFrameProcessor is used in the reducer phase of the
MapReduce job that processes the video frames or images. (K1, V1) is the input
key-value pair types and (K2, V2) is the output key-value pair type. See the Javadoc
for additional details. Most implementations do not require implementing this
class.

An example of framework configuration parameters is available in $MMA_HOME/
example/analytics/conf/oracle_multimedia_analysis_framework.xml.

Using the Multimedia Analytics Framework with Third-Party Software

Using Multimedia Analytics 6-11

6.5 Displaying Images in Output
If the output is displayed as images, oracle.ord.hadoop.OrdPlayImages can be used to
display all the images in the output HDFS directory. This will display the image
frames marked with labels for identified faces. For example:

$ java oracle.ord.hadoop.demo.OrdPlayImages –hadoop_conf_dir $HADOOP_CONF_DIR –
image_file_dir voutput

Displaying Images in Output

6-12 User's Guide and Reference

A
Third-Party Licenses for Bundled Software

Oracle Big Data Spatial and Graph installs several third-party products. This appendix
lists information that applies to all Apache licensed code, and then it lists license
information for the installed third-party products.

• Apache Licensed Code

• ANTLR 3

• AOP Alliance

• Apache Commons CLI

• Apache Commons Codec

• Apache Commons Collections

• Apache Commons Configuration

• Apache Commons IO

• Apache Commons Lang

• Apache Commons Logging

• Apache fluent

• Apache Groovy

• Apache htrace

• Apache HTTP Client

• Apache HTTPComponents Core

• Apache Jena

• Apache Log4j

• Apache Lucene

• Apache Xerces2

• Apache xml-commons

• Cloudera CDH

• Fastutil

• GeoNames Data

Third-Party Licenses for Bundled Software A-1

• Geospatial Data Abstraction Library (GDAL)

• Google Guava

• Google Guice

• Google protobuf

• Jackson

• Jansi

• JCodec

• Jettison

• JLine

• Javassist

• Jung

• MessagePack

• Netty

• OpenCV

• Slf4j

• Tinkerpop Blueprints

• Tinkerpop Gremlin

• Tinkerpop Pipes

A.1 Apache Licensed Code
The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

A copy of the license is also reproduced below.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

Apache Licensed Code

A-2 User's Guide and Reference

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and distribution
as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including but
not limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of
the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted" means any form
of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are managed by, or
on behalf of, the Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise designated in
writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently incorporated
within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-
charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and distribute the Work and
such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have

Apache Licensed Code

Third-Party Licenses for Bundled Software A-3

made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are
necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a cross-claim or counterclaim in
a lawsuit) alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate as of the date such
litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object
form, provided that you meet the following conditions:

a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and

b) You must cause any modified files to carry prominent notices stating that You
changed the files; and

c) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Derivative Works;
and

d) If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the attribution
notices contained within such NOTICE file, excluding those notices that do not pertain
to any part of the Derivative Works, in at least one of the following places: within a
NOTICE text file distributed as part of the Derivative Works; within the Source form
or documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do
not modify the License. You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the Licensor
shall be under the terms and conditions of this License, without any additional terms
or conditions. Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

Apache Licensed Code

A-4 User's Guide and Reference

express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any risks associated
with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law (such
as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor
be liable to You for damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this License or out of the
use or inability to use the Work (including but not limited to damages for loss of
goodwill, work stoppage, computer failure or malfunction, or any and all other
commercial damages or losses), even if such Contributor has been advised of the
possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of
support, warranty, indemnity, or other liability obligations and/or rights consistent
with this License. However, in accepting such obligations, You may act only on Your
own behalf and on Your sole responsibility, not on behalf of any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless for
any liability incurred by, or claims asserted against, such Contributor by reason of
your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets "[]" replaced with your own identifying
information. (Do not include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class
name and description of purpose be included on the same "printed page" as the
copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/Opens a new window) (listed below):

A.2 ANTLR 3
This product was build using ANTLR, which was provided to Oracle under the
following terms:Copyright (c) 2010 Terence ParrAll rights reserved.Redistribution and
use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:Redistributions of source code must retain the
above copyright notice, this list of conditions and the following
disclaimer.Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation and/or other

ANTLR 3

Third-Party Licenses for Bundled Software A-5

http://www.apache.org/licenses/LICENSE-2.0

materials provided with the distribution.Neither the name of the author nor the names
of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.THIS SOFTWARE IS PROVIDED
BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

A.3 AOP Alliance
LICENCE: all the source code provided by AOP Alliance is Public Domain.

A.4 Apache Commons CLI
Copyright 2001-2009 The Apache Software FoundationThis product includes software
developed by The Apache Software Foundation (http://www.apache.org/).

A.5 Apache Commons Codec
Copyright 2002-2009 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

src/test/org/apache/commons/codec/language/DoubleMetaphoneTest.java
contains test data from http://aspell.sourceforge.net/test/batch0.tab.

Copyright (C) 2002 Kevin Atkinson (kevina@gnu.org). Verbatim copying and
distribution of this entire article is permitted in any medium, provided this notice is
preserved.

A.6 Apache Commons Collections
This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Apache Commons Collections Copyright 2001-2008 The Apache Software Foundation

A.7 Apache Commons Configuration
This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Apache Commons Configuration Copyright 2001-2014 The Apache Software
Foundation

AOP Alliance

A-6 User's Guide and Reference

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

A.8 Apache Commons IO
Copyright 2002-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.9 Apache Commons Lang
Copyright 2001-2010 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.10 Apache Commons Logging
Copyright 2003-2007 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.11 Apache fluent
Copyright © 2011-2014 The Apache Software Foundation. All rights reserved.

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.12 Apache Groovy
Copyright 2009-2015 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.13 Apache htrace
Copyright 2009-2015 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.14 Apache HTTP Client
Copyright 1999-2013 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.15 Apache HTTPComponents Core
Copyright 2005-2013 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

This project contains annotations derived from JCIP-ANNOTATIONS

Apache Commons IO

Third-Party Licenses for Bundled Software A-7

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

Copyright (c) 2005 Brian Goetz and Tim Peierls. See http://www.jcip.net

A.16 Apache Jena
Copyright 2011, 2012, 2013, 2014 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

- Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 Hewlett-Packard
Development Company, LP

- Copyright 2010, 2011 Epimorphics Ltd.

- Copyright 2010, 2011 Talis Systems Ltd.

These have been licensed to the Apache Software Foundation under a software grant.

This product includes software developed by PluggedIn Software under a BSD license.

This product includes software developed by Mort Bay Consulting Pty. Ltd.

Copyright (c) 2004-2009 Mort Bay Consulting Pty. Ltd.

A.17 Apache Log4j
Copyright 2007 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.18 Apache Lucene
Copyright 2011-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.19 Apache Xerces2
Copyright 1999-2012 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

A.20 Apache xml-commons
Apache XML Commons XML APIs

Copyright 1999-2009 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

- software copyright (c) 1999, IBM Corporation., http://www.ibm.com.

- software copyright (c) 1999, Sun Microsystems., http://www.sun.com.

- software copyright (c) 2000 World Wide Web Consortium, http://www.w3.org

Apache Jena

A-8 User's Guide and Reference

http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/
http://www.apache.org/

A.21 Cloudera CDH
Licensed to the Apache Software Foundation (ASF) under one or more contributor
license agreements. See the NOTICE file distributed with this work for additional
information regarding copyright ownership. The ASF licenses this file to you under
the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

A.22 Fastutil
Fastutil is available under the Apache License, Version 2.0.

A.23 GeoNames Data
This distribution includes and/or the service uses a modified version of the
GeoNames geographical database, for distributions which may be found in a set of
files with names in the form world_xxxxx.json: one file for cities, one for counties, one
for states, and one for countries. And there is another file with alternate names called
db_alternate_names.txt. All of these files are generated from the GeoNames database.
The original GeoNames database is available at www.geonames.org under the license
set forth below.

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT
PROVIDE LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT
CREATE AN ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS
PROVIDES THIS INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS
MAKES NO WARRANTIES REGARDING THE INFORMATION PROVIDED, AND
DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF
THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT
THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR
GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR
ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

"Adaptation" means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of
music or other alterations of a literary or artistic work, or phonogram or performance
and includes cinematographic adaptations or any other form in which the Work may

Cloudera CDH

Third-Party Licenses for Bundled Software A-9

be recast, transformed, or adapted including in any form recognizably derived from
the original, except that a work that constitutes a Collection will not be considered an
Adaptation for the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the synchronization of the Work
in timed-relation with a moving image ("synching") will be considered an Adaptation
for the purpose of this License.

"Collection" means a collection of literary or artistic works, such as encyclopedias and
anthologies, or performances, phonograms or broadcasts, or other works or subject
matter other than works listed in Section 1(f) below, which, by reason of the selection
and arrangement of their contents, constitute intellectual creations, in which the Work
is included in its entirety in unmodified form along with one or more other
contributions, each constituting separate and independent works in themselves, which
together are assembled into a collective whole. A work that constitutes a Collection
will not be considered an Adaptation (as defined above) for the purposes of this
License.

"Distribute" means to make available to the public the original and copies of the Work
or Adaptation, as appropriate, through sale or other transfer of ownership.

"Licensor" means the individual, individuals, entity or entities that offer(s) the Work
under the terms of this License.

"Original Author" means, in the case of a literary or artistic work, the individual,
individuals, entity or entities who created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of a performance the actors,
singers, musicians, dancers, and other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or expressions of folklore; (ii)
in the case of a phonogram the producer being the person or legal entity who first
fixes the sounds of a performance or other sounds; and, (iii) in the case of broadcasts,
the organization that transmits the broadcast.

"Work" means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic
domain, whatever may be the mode or form of its expression including digital form,
such as a book, pamphlet and other writing; a lecture, address, sermon or other work
of the same nature; a dramatic or dramatico-musical work; a choreographic work or
entertainment in dumb show; a musical composition with or without words; a
cinematographic work to which are assimilated works expressed by a process
analogous to cinematography; a work of drawing, painting, architecture, sculpture,
engraving or lithography; a photographic work to which are assimilated works
expressed by a process analogous to photography; a work of applied art; an
illustration, map, plan, sketch or three-dimensional work relative to geography,
topography, architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable work; or a work
performed by a variety or circus performer to the extent it is not otherwise considered
a literary or artistic work.

"You" means an individual or entity exercising rights under this License who has not
previously violated the terms of this License with respect to the Work, or who has
received express permission from the Licensor to exercise rights under this License
despite a previous violation.

"Publicly Perform" means to perform public recitations of the Work and to
communicate to the public those public recitations, by any means or process, including
by wire or wireless means or public digital performances; to make available to the
public Works in such a way that members of the public may access these Works from
a place and at a place individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of the performances of

GeoNames Data

A-10 User's Guide and Reference

the Work, including by public digital performance; to broadcast and rebroadcast the
Work by any means including signs, sounds or images.

"Reproduce" means to make copies of the Work by any means including without
limitation by sound or visual recordings and the right of fixation and reproducing
fixations of the Work, including storage of a protected performance or phonogram in
digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict
any uses free from copyright or rights arising from limitations or exceptions that are
provided for in connection with the copyright protection under copyright law or other
applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of the
applicable copyright) license to exercise the rights in the Work as stated below:

to Reproduce the Work, to incorporate the Work into one or more Collections, and to
Reproduce the Work as incorporated in the Collections;

to create and Reproduce Adaptations provided that any such Adaptation, including
any translation in any medium, takes reasonable steps to clearly label, demarcate or
otherwise identify that changes were made to the original Work. For example, a
translation could be marked "The original work was translated from English to
Spanish," or a modification could indicate "The original work has been modified.";

to Distribute and Publicly Perform the Work including as incorporated in Collections;
and, to Distribute and Publicly Perform Adaptations.

For the avoidance of doubt:

Non-waivable Compulsory License Schemes. In those jurisdictions in which the right
to collect royalties through any statutory or compulsory licensing scheme cannot be
waived, the Licensor reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

Waivable Compulsory License Schemes. In those jurisdictions in which the right to
collect royalties through any statutory or compulsory licensing scheme can be waived,
the Licensor waives the exclusive right to collect such royalties for any exercise by You
of the rights granted under this License; and,

Voluntary License Schemes. The Licensor waives the right to collect royalties, whether
individually or, in the event that the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society, from any exercise by You of
the rights granted under this License.

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as are
technically necessary to exercise the rights in other media and formats. Subject to
Section 8(f), all rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

You may Distribute or Publicly Perform the Work only under the terms of this
License. You must include a copy of, or the Uniform Resource Identifier (URI) for, this
License with every copy of the Work You Distribute or Publicly Perform. You may not
offer or impose any terms on the Work that restrict the terms of this License or the
ability of the recipient of the Work to exercise the rights granted to that recipient
under the terms of the License. You may not sublicense the Work. You must keep
intact all notices that refer to this License and to the disclaimer of warranties with
every copy of the Work You Distribute or Publicly Perform. When You Distribute or

GeoNames Data

Third-Party Licenses for Bundled Software A-11

Publicly Perform the Work, You may not impose any effective technological measures
on the Work that restrict the ability of a recipient of the Work from You to exercise the
rights granted to that recipient under the terms of the License. This Section 4(a) applies
to the Work as incorporated in a Collection, but this does not require the Collection
apart from the Work itself to be made subject to the terms of this License. If You create
a Collection, upon notice from any Licensor You must, to the extent practicable,
remove from the Collection any credit as required by Section 4(b), as requested. If You
create an Adaptation, upon notice from any Licensor You must, to the extent
practicable, remove from the Adaptation any credit as required by Section 4(b), as
requested.

If You Distribute, or Publicly Perform the Work or any Adaptations or Collections,
You must, unless a request has been made pursuant to Section 4(a), keep intact all
copyright notices for the Work and provide, reasonable to the medium or means You
are utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if
supplied, and/or if the Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution
Parties") in Licensor's copyright notice, terms of service or by other reasonable means,
the name of such party or parties; (ii) the title of the Work if supplied; (iii) to the extent
reasonably practicable, the URI, if any, that Licensor specifies to be associated with the
Work, unless such URI does not refer to the copyright notice or licensing information
for the Work; and (iv) , consistent with Section 3(b), in the case of an Adaptation, a
credit identifying the use of the Work in the Adaptation (e.g., "French translation of
the Work by Original Author," or "Screenplay based on original Work by Original
Author"). The credit required by this Section 4 (b) may be implemented in any
reasonable manner; provided, however, that in the case of a Adaptation or Collection,
at a minimum such credit will appear, if a credit for all contributing authors of the
Adaptation or Collection appears, then as part of these credits and in a manner at least
as prominent as the credits for the other contributing authors. For the avoidance of
doubt, You may only use the credit required by this Section for the purpose of
attribution in the manner set out above and, by exercising Your rights under this
License, You may not implicitly or explicitly assert or imply any connection with,
sponsorship or endorsement by the Original Author, Licensor and/or Attribution
Parties, as appropriate, of You or Your use of the Work, without the separate, express
prior written permission of the Original Author, Licensor and/or Attribution Parties.

Except as otherwise agreed in writing by the Licensor or as may be otherwise
permitted by applicable law, if You Reproduce, Distribute or Publicly Perform the
Work either by itself or as part of any Adaptations or Collections, You must not
distort, mutilate, modify or take other derogatory action in relation to the Work which
would be prejudicial to the Original Author's honor or reputation. Licensor agrees that
in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section
3(b) of this License (the right to make Adaptations) would be deemed to be a
distortion, mutilation, modification or other derogatory action prejudicial to the
Original Author's honor and reputation, the Licensor will waive or not assert, as
appropriate, this Section, to the fullest extent permitted by the applicable national law,
to enable You to reasonably exercise Your right under Section 3(b) of this License
(right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,
WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER

GeoNames Data

A-12 User's Guide and Reference

DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER
OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT
APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE
LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL
THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE
WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

This License and the rights granted hereunder will terminate automatically upon any
breach by You of the terms of this License. Individuals or entities who have received
Adaptations or Collections from You under this License, however, will not have their
licenses terminated provided such individuals or entities remain in full compliance
with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of this
License.

Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such election will not
serve to withdraw this License (or any other license that has been, or is required to be,
granted under the terms of this License), and this License will continue in full force
and effect unless terminated as stated above.

8. Miscellaneous

Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor
offers to the recipient a license to the Work on the same terms and conditions as the
license granted to You under this License.

Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the
recipient a license to the original Work on the same terms and conditions as the license
granted to You under this License.

If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provision
shall be reformed to the minimum extent necessary to make such provision valid and
enforceable.

No term or provision of this License shall be deemed waived and no breach consented
to unless such waiver or consent shall be in writing and signed by the party to be
charged with such waiver or consent.

This License constitutes the entire agreement between the parties with respect to the
Work licensed here. There are no understandings, agreements or representations with
respect to the Work not specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and You.

The rights granted under, and the subject matter referenced, in this License were
drafted utilizing the terminology of the Berne Convention for the Protection of
Literary and Artistic Works (as amended on September 28, 1979), the Rome
Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO Performances and
Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on
July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in

GeoNames Data

Third-Party Licenses for Bundled Software A-13

which the License terms are sought to be enforced according to the corresponding
provisions of the implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable copyright law includes
additional rights not granted under this License, such additional rights are deemed to
be included in the License; this License is not intended to restrict the license of any
rights under applicable law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty whatsoever
in connection with the Work. Creative Commons will not be liable to You or any party
on any legal theory for any damages whatsoever, including without limitation any
general, special, incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative Commons has
expressly identified itself as the Licensor hereunder, it shall have all rights and
obligations of Licensor.

Except for the limited purpose of indicating to the public that the Work is licensed
under the CCPL, Creative Commons does not authorize the use by either party of the
trademark "Creative Commons" or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any permitted use
will be in compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made available upon
request from time to time. For the avoidance of doubt, this trademark restriction does
not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

A.24 Geospatial Data Abstraction Library (GDAL)
GDAL/OGR General

In general GDAL/OGR is licensed under an MIT/X style license with the

following terms:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions: The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESSOR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

gdal/frmts/gtiff/tif_float.c

Copyright (c) 2002, Industrial Light & Magic, a division of Lucas Digital Ltd. LLC

Geospatial Data Abstraction Library (GDAL)

A-14 User's Guide and Reference

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Industrial Light & Magic nor the names of its contributors may
be used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

gdal/frmts/hdf4/hdf-eos/*

Copyright (C) 1996 Hughes and Applied Research Corporation

Permission to use, modify, and distribute this software and its documentation

for any purpose without fee is hereby granted, provided that the above

copyright notice appear in all copies and that both that copyright notice and

this permission notice appear in supporting documentation.

gdal/frmts/pcraster/libcsf

Copyright (c) 1997-2003, Utrecht University

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Utrecht University nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

Geospatial Data Abstraction Library (GDAL)

Third-Party Licenses for Bundled Software A-15

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

gdal/frmts/grib/degrib/*

The degrib and g2clib source code are modified versions of code produced by NOAA
NWS and are in the public domain subject to the following restrictions:

http://www.weather.gov/im/softa.htm

DISCLAIMER The United States Government makes no warranty, expressed or
implied, as to the usefulness of the software and documentation for any purpose. The
U.S. Government, its instrumentalities, officers, employees, and agents assumes no
responsibility (1) for the use of the software and documentation listed below, or (2) to
provide technical support to users.

http://www.weather.gov/disclaimer.php

The information on government servers are in the public domain, unless specifically
annotated otherwise, and may be used freely by the public so long as you do not 1)
claim it is your own (e.g. by claiming copyright for NWS information -- see below), 2)
use it in a manner that implies an endorsement or affiliation with NOAA/NWS, or 3)
modify it in content and then present it as official government material. You also
cannot present information of your own in a way that makes it appear to be official
government information.

The user assumes the entire risk related to its use of this data. NWS is providing this
data "as is," and NWS disclaims any and all warranties, whether express or implied,
including (without limitation) any implied warranties of merchantability or fitness for
a particular purpose. In no event will NWS be liable to you or to any third party for
any direct, indirect, incidental, consequential, special or exemplary damages or lost
profit resulting from any use or misuse of this data.

As required by 17 U.S.C. 403, third parties producing copyrighted works consisting
predominantly of the material appearing in NWS Web pages must provide notice with
such work(s) identifying the NWS material incorporated and stating that such material
is not subject to copyright protection.

port/cpl_minizip*

This is version 2005-Feb-10 of the Info-ZIP copyright and license.

The definitive version of this document should be available at

ftp://ftp.info-zip.org/pub/infozip/license.html indefinitely.

Copyright (c) 1990-2005 Info-ZIP. All rights reserved.

Geospatial Data Abstraction Library (GDAL)

A-16 User's Guide and Reference

For the purposes of this copyright and license, "Info-ZIP" is defined as

the following set of individuals:

Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,

Jean-loup Gailly, Hunter Goatley, Ed Gordon, Ian Gorman, Chris Herborth,

Dirk Haase, Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz,

David Kirschbaum, Johnny Lee, Onno van der Linden, Igor Mandrichenko,

Steve P. Miller, Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs,

Kai Uwe Rommel, Steve Salisbury, Dave Smith, Steven M. Schweda,

Christian Spieler, Cosmin Truta, Antoine Verheijen, Paul von Behren,

Rich Wales, Mike White

This software is provided "as is," without warranty of any kind, express or implied. In
no event shall Info-ZIP or its contributors be held liable for any direct, indirect,
incidental, special or consequential damages arising out of the use of or inability to use
this software.

Permission is granted to anyone to use this software for any purpose, including
commercial applications, and to alter it and redistribute it freely, subject to the
following restrictions:

1. Redistributions of source code must retain the above copyright notice, definition,
disclaimer, and this list of conditions.

2. Redistributions in binary form (compiled executables) must reproduce the above
copyright notice, definition, disclaimer, and this list of conditions in documentation
and/or other materials provided with the distribution. The sole exception to this
condition is redistribution of a standard UnZipSFX binary (including SFXWiz) as part
of a self-extracting archive; that is permitted without inclusion of this license, as long
as the normal SFX banner has not been removed from the binary or disabled.

3. Altered versions--including, but not limited to, ports to new operating systems,
existing ports with new graphical interfaces, and dynamic, shared, or static library
versions--must be plainly marked as such and must not be misrepresented as being
the original source. Such altered versions also must not be misrepresented as being
Info-ZIP releases--including, but not limited to, labeling of the altered versions with
the names "Info-ZIP" (or any variation thereof, including, but not limited to, different
capitalizations), "Pocket UnZip," "WiZ" or "MacZip" without the explicit permission of
Info-ZIP. Such altered versions are further prohibited from misrepresentative use of
the Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s).

4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip," "UnZipSFX,"
"WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and binary
releases.

gdal/ogr/ogrsf_frmts/dxf/intronurbs.cpp

This code is derived from the code associated with the book "An Introduction to
NURBS" by David F. Rogers. More information on the book and the code is available
at:

http://www.nar-associates.com/nurbs/

Copyright (c) 2009, David F. Rogers

All rights reserved.

Geospatial Data Abstraction Library (GDAL)

Third-Party Licenses for Bundled Software A-17

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of the David F. Rogers nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.25 Google Guava
Guava is licensed under the Apache License, Version 2.0

Copyright 2006 - 2011 Google, Inc. All rights reserved.

A.26 Google Guice
Guice is licensed under the Apache License, Version 2.0

Copyright 2006 – 2011 Google, Inc. All rights reserved.

A.27 Google protobuf
Copyright 2008, Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of Google Inc. nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

Google Guava

A-18 User's Guide and Reference

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.28 Jackson
Copyright 2009 FasterXML, LLC

Jackson is available under the Apache License, Version 2.0.

A.29 Jansi
Copyright (C) 2009, Progress Software Corporation and/or its subsidiaries or
affiliates.

Jansi is available under the Apache License, Version 2.0.

A.30 JCodec
This software is based in part on the work of the Independent JPEG Group.

All files except two are available under the FreeBSD license:

http://www.jcodec.org/lic.html

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

--

Jackson

Third-Party Licenses for Bundled Software A-19

1 file (StringUtils.java) is "borrowed from Apache". This file is from Apache Commons
Lang which is licensed under Apache 2.0

http://www.apache.org/licenses/LICENSE-2.0

1 file (VP8DCT.java) refers to Independent JPEG Group) which has the following
license (note - the configuration scripts and GIF code mentioned by the license are not
included):

The authors make NO WARRANTY or representation, either express or implied, with
respect to this software, its quality, accuracy, merchantability, or fitness for a
particular purpose. This software is provided "AS IS", and you, its user, assume the
entire risk as to its quality and accuracy.

This software is copyright (C) 1991-2014, Thomas G. Lane, Guido Vollbeding.

All Rights Reserved except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this software (or
portions thereof) for any purpose, without fee, subject to these conditions:

(1) If any part of the source code for this software is distributed, then this README
file must be included, with this copyright and no-warranty notice unaltered; and any
additions, deletions, or changes to the original files must be clearly indicated in
accompanying documentation.

(2) If only executable code is distributed, then the accompanying documentation must
state that "this software is based in part on the work of the Independent JPEG Group".

(3) Permission for use of this software is granted only if the user accepts full
responsibility for any undesirable consequences; the authors accept NO LIABILITY for
damages of any kind.

These conditions apply to any software derived from or based on the IJG code, not just
to the unmodified library. If you use our work, you ought to acknowledge us.

Permission is NOT granted for the use of any IJG author's name or company name in
advertising or publicity relating to this software or products derived from it. This
software may be referred to only as "the Independent JPEG Group's software".

We specifically permit and encourage the use of this software as the basis of
commercial products, provided that all warranty or liability claims are assumed by the
product vendor.

The Unix configuration script "configure" was produced with GNU Autoconf.

It is copyright by the Free Software Foundation but is freely distributable.

The same holds for its supporting scripts (config.guess, config.sub, ltmain.sh). Another
support script, install-sh, is copyright by X Consortium but is also freely distributable.

The IJG distribution formerly included code to read and write GIF files. To avoid
entanglement with the Unisys LZW patent (now expired), GIF reading support has
been removed altogether, and the GIF writer has been simplified to produce
"uncompressed GIFs". This technique does not use the LZW algorithm; the resulting
GIF files are larger than usual, but are readable by all standard GIF decoders.

We are required to state that "The Graphics Interchange Format(c) is the Copyright
property of CompuServe Incorporated. GIF(sm) is a Service Mark property of
CompuServe Incorporated."

JCodec

A-20 User's Guide and Reference

A.31 Jettison
Copyright 2006 Envoi Solutions LLC.

Jettison is available under the Apache License, Version 2.0.

A.32 JLine
Copyright (c) 2002-2006, Marc Prud'hommeaux <mwp1@cornell.edu>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

Neither the name of JLine nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.33 Javassist
Copyright 1999-2015 by Shigeru Chiba.

the contents of this software may be used under the terms of the Apache License
Version 2.0.

A.34 Jung
THE JUNG LICENSE

Copyright (c) 2003-2004, Regents of the University of California and the JUNG Project
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Jettison

Third-Party Licenses for Bundled Software A-21

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

- Neither the name of the University of California nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A.35 MessagePack
Copyright (C) 2008-2010 FURUHASHI Sadayuki

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the
License.

A.36 Netty
The Netty Project

=================

Please visit the Netty web site for more information:

http://netty.io/

Copyright 2011 The Netty Project

The Netty Project licenses this file to you under the Apache License, version 2.0 (the
"License"); you may not use this file except in compliance with the License. You may
obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

MessagePack

A-22 User's Guide and Reference

Also, please refer to each LICENSE.<component>.txt file, which is located in the
'license' directory of the distribution file, for the license terms of the components that
this product depends on.

This product contains the extensions to Java Collections Framework which has been
derived from the works by JSR-166 EG, Doug Lea, and Jason T. Greene:

* LICENSE:

* license/LICENSE.jsr166y.txt (Public Domain)

* HOMEPAGE:

* http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/

* http://viewvc.jboss.org/cgi-bin/viewvc.cgi/jbosscache/experimental/jsr166/

This product contains a modified version of Robert Harder's Public Domain Base64
Encoder and Decoder, which can be obtained at:

* LICENSE:

* license/LICENSE.base64.txt (Public Domain)

* HOMEPAGE:

* http://iharder.sourceforge.net/current/java/base64/

This product contains a modified version of 'JZlib', a re-implementation of zlib in pure
Java, which can be obtained at:

* LICENSE:

* license/LICENSE.jzlib.txt (BSD Style License)

* HOMEPAGE:

* http://www.jcraft.com/jzlib/

Copyright (c) 2000-2011 ymnk, JCraft,Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in

the documentation and/or other materials provided with the distribution.

3. The names of the authors may not be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT, INC. OR ANY
CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

Netty

Third-Party Licenses for Bundled Software A-23

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product optionally depends on 'Protocol Buffers', Google's data interchange
format, which can be obtained at:

* LICENSE:

* license/LICENSE.protobuf.txt (New BSD License)

* HOMEPAGE:

* http://code.google.com/p/protobuf/

This product optionally depends on 'SLF4J', a simple logging facade for Java, which
can be obtained at:

* LICENSE:

* license/LICENSE.slf4j.txt (MIT License)

* HOMEPAGE:

* http://www.slf4j.org/

This product optionally depends on 'Apache Commons Logging', a logging
framework, which can be obtained at:

* LICENSE:

* license/LICENSE.commons-logging.txt (Apache License 2.0)

* HOMEPAGE:

* http://commons.apache.org/logging/

This product optionally depends on 'Apache Log4J', a logging framework, which can
be obtained at:

* LICENSE:

* license/LICENSE.log4j.txt (Apache License 2.0)

* HOMEPAGE:

* http://logging.apache.org/log4j/

This product optionally depends on 'JBoss Logging', a logging framework, which can
be obtained at:

* LICENSE:

* license/LICENSE.jboss-logging.txt (GNU LGPL 2.1)

* HOMEPAGE:

* http://anonsvn.jboss.org/repos/common/common-logging-spi/

This product optionally depends on 'Apache Felix', an open source OSGi framework
implementation, which can be obtained at:

* LICENSE:

* license/LICENSE.felix.txt (Apache License 2.0)

* HOMEPAGE:

* http://felix.apache.org/

Netty

A-24 User's Guide and Reference

This product optionally depends on 'Webbit', a Java event based WebSocket and
HTTP server:

* LICENSE:

* license/LICENSE.webbit.txt (BSD License)

* HOMEPAGE:

* https://github.com/joewalnes/webbit

A.37 OpenCV
IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR
USING.

By downloading, copying, installing or using the software you agree to this license. If
you do not agree to this license, do not download, install, copy or use the software.

License Agreement

For Open Source Computer Vision Library

Copyright (C) 2000-2008, Intel Corporation, all rights reserved.

Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.

Third party copyrights are property of their respective owners.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* The name of the copyright holders may not be used to endorse or promote products
derived from this software without specific prior written permission.

This software is provided by the copyright holders and contributors "as is" and any
express or implied warranties, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose are disclaimed.

In no event shall the Intel Corporation or contributors be liable for any direct, indirect,
incidental, special, exemplary, or consequential damages (including, but not limited
to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict
liability, or tort (including negligence or otherwise) arising in any way out of the use
of this software, even if advised of the possibility of such damage.

A.38 Slf4j
Copyright (c) 2004-2011 QOS.ch

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to

OpenCV

Third-Party Licenses for Bundled Software A-25

permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

A.39 Tinkerpop Blueprints
Copyright (c) 2009-2012, TinkerPop [http://tinkerpop.com]

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.40 Tinkerpop Gremlin
Copyright (c) 2009-2012, TinkerPop [http://tinkerpop.com]

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

Tinkerpop Blueprints

A-26 User's Guide and Reference

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.41 Tinkerpop Pipes
Copyright (c) 2009-2012, TinkerPop [http://tinkerpop.com]

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither the name of the TinkerPop nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL TINKERPOP BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES;LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT(INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Tinkerpop Pipes

Third-Party Licenses for Bundled Software A-27

Tinkerpop Pipes

A-28 User's Guide and Reference

	Contents
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Big Data Spatial and Graph Overview
	1.1 About Big Data Spatial and Graph
	1.2 Spatial Features
	1.3 Property Graph Features
	1.3.1 Property Graph Sizing Recommendations

	1.4 Multimedia Analytics Features
	1.5 Installing Oracle Big Data Spatial and Graph on an Oracle Big Data Appliance
	1.6 Installing and Configuring the Big Data Spatial Image Processing Framework
	1.6.1 Installing Image Processing Framework for Oracle Big Data Appliance Distribution
	1.6.2 Installing the Image Processing Framework for Other Distributions (Not Oracle Big Data Appliance)
	1.6.2.1 Prerequisites for Installing the Image Processing Framework for Other Distributions
	1.6.2.2 Installing the Image Processing Framework for Other Distributions

	1.6.3 Post-installation Verification of the Image Processing Framework
	1.6.3.1 Image Loading Test Script
	1.6.3.2 Image Processor Test Script
	1.6.3.3 Image Processor DEM Test Script

	1.7 Installing and Configuring the Big Data Spatial Image Server
	1.7.1 Installing and Configuring the Image Server for Oracle Big Data Appliance
	1.7.1.1 Prerequisites for installing Image Server on Oracle Big Data Appliance
	1.7.1.2 Installing Image Server Web on an Oracle Big Data Appliance
	1.7.1.3 Configuring the Environment

	1.7.2 Installing and Configuring the Image Server Web for Other Systems (Not Big Data Appliance)
	1.7.2.1 Prerequisites for Installing the Image Server on Other Systems
	1.7.2.2 Installing the Image Server Web on Other Systems
	1.7.2.3 Configuring the Environment

	1.7.3 Post-installation Verification Example for the Image Server Console
	1.7.3.1 Loading images from the local server to HDFS Hadoop cluster
	1.7.3.2 Creating a mosaic image and catalog

	1.8 Installing Oracle Big Data Spatial Hadoop Vector Console
	1.8.1 Assumptions and Prerequisite Libraries
	1.8.1.1 Assumptions
	1.8.1.2 Prerequisite Libraries

	1.8.2 Installing Spatial Hadoop Vector Console on Oracle Big Data Appliance
	1.8.3 Installing Spatial Hadoop Vector Console for Other Systems (Not Big Data Appliance)
	1.8.4 Configuring Spatial Hadoop Vector Console on Oracle Big Data Appliance
	1.8.5 Configuring Spatial Hadoop Vector Console for Other Systems (Not Big Data Appliance)

	1.9 Installing Property Graph Support on a CDH Cluster or Other Hardware
	1.9.1 Apache HBase Prerequisites
	1.9.2 Property Graph Installation Steps
	1.9.3 About the Property Graph Installation Directory
	1.9.4 Optional Installation Task for In-Memory Analytics
	1.9.4.1 Installing and Configuring Hadoop
	1.9.4.2 Running In-Memory Analytics on Hadoop

	1.10 Installing and Configuring Multimedia Analytics Support
	1.10.1 Assumptions and Libraries for Multimedia Analytics
	1.10.2 Transcoding Software (Options)

	2 Using Big Data Spatial and Graph with Spatial Data
	2.1 About Big Data Spatial and Graph Support for Spatial Data
	2.1.1 What is Big Data Spatial and Graph on Apache Hadoop?
	2.1.2 Advantages of Oracle Big Data Spatial and Graph
	2.1.3 Oracle Big Data Spatial Features and Functions
	2.1.4 Oracle Big Data Spatial Files, Formats, and Software Requirements

	2.2 Oracle Big Data Vector and Raster Data Processing
	2.2.1 Oracle Big Data Spatial Raster Data Processing
	2.2.2 Oracle Big Data Spatial Vector Data Processing

	2.3 Oracle Big Data Spatial Hadoop Image Processing Framework for Raster Data Processing
	2.3.1 Image Loader
	2.3.2 Image Processor
	2.3.3 Image Server

	2.4 Loading an Image to Hadoop Using the Image Loader
	2.4.1 Image Loading Job
	2.4.2 Input Parameters
	2.4.3 Output Parameters

	2.5 Processing an Image Using the Oracle Spatial Hadoop Image Processor
	2.5.1 Image Processing Job
	2.5.2 Input Parameters
	2.5.2.1 Catalog XML Structure
	2.5.2.2 Mosaic Definition XML Structure

	2.5.3 Job Execution
	2.5.4 Processing Classes and ImageBandWritable
	2.5.4.1 Location of the Classes and Jar Files

	2.5.5 Map Algebra Operations
	2.5.6 Output

	2.6 Loading and Processing an Image Using the Oracle Spatial Hadoop Raster Processing API
	2.7 Oracle Big Data Spatial Vector Analysis
	2.7.1 Spatial Indexing
	2.7.1.1 Spatial Indexing Class Structure
	2.7.1.2 Configuration for Creating a Spatial Index
	2.7.1.3 Input Formats for a Spatial Index
	2.7.1.4 Support for GeoJSON and Shapefile Formats

	2.7.2 Using MVSuggest
	2.7.3 Spatial Filtering
	2.7.3.1 Filtering Records

	2.7.4 Classifying Data Hierarchically
	2.7.4.1 Changing the Hierarchy Level Range
	2.7.4.2 Controlling the Search Hierarchy
	2.7.4.3 Using MVSuggest to Classify the Data

	2.7.5 Generating Buffers
	2.7.6 Spatial Binning
	2.7.7 Spatial Clustering
	2.7.8 RecordInfoProvider
	2.7.8.1 Sample RecordInfoProvider Implementation
	2.7.8.2 LocalizableRecordInfoProvider

	2.7.9 HierarchyInfo
	2.7.9.1 Sample HierarchyInfo Implementation

	2.7.10 Using JGeometry in MapReduce Jobs
	2.7.11 Tuning Performance Data of Job Running Times using Vector Analysis API

	2.8 Using the Oracle Big Data Spatial and Graph Vector Console
	2.8.1 Creating a Spatial Index Using the Console
	2.8.2 Exploring the Indexed Spatial Data
	2.8.3 Running a Categorization Job Using the Console
	2.8.4 Viewing the Categorization Results
	2.8.5 Saving Categorization Results to a File
	2.8.6 Creating and Deleting Templates
	2.8.7 Configuring Templates
	2.8.8 Running a Clustering Job Using the Console
	2.8.9 Viewing the Clustering Results
	2.8.10 Saving Clustering Results to a File
	2.8.11 Running a Binning Job Using the Console
	2.8.12 Viewing the Binning Results
	2.8.13 Saving Binning Results to a File
	2.8.14 Running a Job to Create an Index Using the Command Line
	2.8.15 Running a Job to Perform a Spatial Filtering
	2.8.16 Running a Job to Create a Hierarchy Result
	2.8.17 Running a Job to Generate Buffer

	2.9 Using Oracle Big Data Spatial and Graph Image Server Console
	2.9.1 Loading Images to HDFS Hadoop Cluster to Create a Mosaic

	3 Configuring Property Graph Support
	3.1 Tuning the Software Configuration
	3.1.1 Tuning Apache HBase for Use With Property Graphs
	3.1.1.1 Modifying the Apache HBase Configuration
	3.1.1.2 Modifying the Java Memory Settings

	3.1.2 Tuning Oracle NoSQL Database for Use with Property Graphs

	4 Using Property Graphs in a Big Data Environment
	4.1 About Property Graphs
	4.1.1 What Are Property Graphs?
	4.1.2 What Is Big Data Support for Property Graphs?
	4.1.2.1 Analytics Layer
	4.1.2.2 Data Access Layer
	4.1.2.3 Storage Management
	4.1.2.4 RESTful Web Services

	4.2 About Property Graph Data Formats
	4.2.1 GraphML Data Format
	4.2.2 GraphSON Data Format
	4.2.3 GML Data Format
	4.2.4 Oracle Flat File Format

	4.3 Getting Started With Property Graphs
	4.4 Using Java APIs for Property Graph Data
	4.4.1 Overview of the Java APIs
	4.4.1.1 Oracle Big Data Spatial and Graph Java APIs
	4.4.1.2 TinkerPop Blueprints Java APIs
	4.4.1.3 Apache Hadoop Java APIs
	4.4.1.4 Oracle NoSQL Database Java APIs
	4.4.1.5 Apache HBase Java APIs

	4.4.2 Parallel Loading of Graph Data
	4.4.2.1 Parallel Data Loading Using Partitions
	4.4.2.2 Parallel Data Loading Using Fine-Tuning
	4.4.2.3 Parallel Data Loading Using Multiple Files
	4.4.2.4 Parallel Retrieval of Graph Data
	4.4.2.5 Using an Element Filter Callback for Subgraph Extraction
	4.4.2.6 Using Optimization Flags on Reads over Property Graph Data
	4.4.2.7 Adding and Removing Attributes of a Property Graph Subgraph
	4.4.2.8 Getting Property Graph Metadata

	4.4.3 Opening and Closing a Property Graph Instance
	4.4.3.1 Using Oracle NoSQL Database
	4.4.3.2 Using Apache HBase

	4.4.4 Creating the Vertices
	4.4.5 Creating the Edges
	4.4.6 Deleting the Vertices and Edges
	4.4.7 Reading a Graph from a Database into the Embedded In-Memory Analyst
	4.4.8 Dropping a Property Graph
	4.4.8.1 Using Oracle NoSQL Database
	4.4.8.2 Using Apache HBase

	4.5 Managing Text Indexing for Property Graph Data
	4.5.1 Using Automatic Indexes with the Apache Lucene Search Engine
	4.5.2 Using Manual Indexes with the SolrCloud Search Engine
	4.5.3 Handling Data Types
	4.5.3.1 Appending Data Type Identifiers on Apache Lucene
	4.5.3.2 Appending Data Type Identifiers on SolrCloud

	4.5.4 Uploading a Collection's SolrCloud Configuration to Zookeeper
	4.5.5 Updating Configuration Settings on Text Indexes for Property Graph Data
	4.5.6 Using Parallel Query on Text Indexes for Property Graph Data

	4.6 Support for Secure Oracle NoSQL Database
	4.7 Support for Secure Apache HBase/Hadoop
	4.8 Using the Groovy Shell with Property Graph Data
	4.9 Exploring the Sample Programs
	4.9.1 About the Sample Programs
	4.9.2 Compiling and Running the Sample Programs
	4.9.3 About the Example Output
	4.9.4 Example: Creating a Property Graph
	4.9.5 Example: Dropping a Property Graph
	4.9.6 Examples: Adding and Dropping Vertices and Edges

	4.10 Oracle Flat File Format Definition
	4.10.1 About the Property Graph Description Files
	4.10.2 Vertex File
	4.10.3 Edge File
	4.10.4 Encoding Special Characters
	4.10.5 Example Property Graph in Oracle Flat File Format

	4.11 Example Python User Interface

	5 Using In-Memory Analytics
	5.1 Reading a Graph into Memory
	5.1.1 Connecting to an In-Memory Analytics Server Instance
	5.1.2 Using the Shell Help
	5.1.3 Providing Graph Metadata in a Configuration File
	5.1.4 Reading Graph Data into Memory
	5.1.4.1 Read a Graph Stored in Apache HBase into Memory
	5.1.4.2 Read a Graph Stored in Oracle NoSQL Database into Memory
	5.1.4.3 Read a Graph Stored in the Local File System into Memory

	5.2 Reading Custom Graph Data
	5.2.1 Creating a Simple Graph File
	5.2.2 Adding a Vertex Property
	5.2.3 Using Strings as Vertex Identifiers
	5.2.4 Adding an Edge Property

	5.3 Storing Graph Data on Disk
	5.3.1 Storing the Results of Analysis in a Vertex Property
	5.3.2 Storing a Graph in Edge-List Format on Disk

	5.4 Executing Built-in Algorithms
	5.4.1 About In-Memory Analytics
	5.4.2 Running the Triangle Counting Algorithm
	5.4.3 Running the Pagerank Algorithm

	5.5 Creating Subgraphs
	5.5.1 About Filter Expressions
	5.5.2 Using a Simple Filter to Create a Subgraph
	5.5.3 Using a Complex Filter to Create a Subgraph
	5.5.4 Using a Vertex Set to Create a Bipartite Subgraph

	5.6 Deploying to Jetty
	5.6.1 About the Authentication Mechanism

	5.7 Deploying to Apache Tomcat
	5.8 Deploying to Oracle WebLogic Server
	5.8.1 Installing Oracle WebLogic Server
	5.8.2 Deploying In-Memory Analytics
	5.8.3 Verifying That the Server Works

	5.9 Connecting to the In-Memory Analytics Server
	5.9.1 Connecting with the In-Memory Analytics Shell
	5.9.1.1 About Logging HTTP Requests

	5.9.2 Connecting with Java
	5.9.3 Connecting with an HTTP Request

	5.10 Reading and Storing Data in HDFS
	5.10.1 Loading Data from HDFS
	5.10.2 Storing Graph Snapshots in HDFS
	5.10.3 Compiling and Running a Java Application in Hadoop

	5.11 Running In-Memory Analytics as a YARN Application
	5.11.1 Starting and Stopping In-Memory Analytics Services
	5.11.1.1 Configuring the In-Memory Analytics YARN Client
	5.11.1.2 Starting a New In-Memory Analytics Service
	5.11.1.3 About Long-Running In-Memory Analytics Services
	5.11.1.4 Stopping In-Memory Analytics Services

	5.11.2 Connecting to In-Memory Analytics Services
	5.11.3 Monitoring In-Memory Analytics Services

	6 Using Multimedia Analytics
	6.1 About Multimedia Analytics
	6.2 Face Recognition Using the Multimedia Analytics Framework
	6.2.1 Training to Detect Faces
	6.2.2 Selecting Faces to be Used for Training
	6.2.3 Detecting Faces in Videos
	6.2.4 Detecting Faces in Images
	6.2.5 Examples and Training Materials for Detecting Faces

	6.3 Configuration Properties for Multimedia Analytics
	6.4 Using the Multimedia Analytics Framework with Third-Party Software
	6.5 Displaying Images in Output

	A Third-Party Licenses for Bundled Software
	A.1 Apache Licensed Code
	A.2 ANTLR 3
	A.3 AOP Alliance
	A.4 Apache Commons CLI
	A.5 Apache Commons Codec
	A.6 Apache Commons Collections
	A.7 Apache Commons Configuration
	A.8 Apache Commons IO
	A.9 Apache Commons Lang
	A.10 Apache Commons Logging
	A.11 Apache fluent
	A.12 Apache Groovy
	A.13 Apache htrace
	A.14 Apache HTTP Client
	A.15 Apache HTTPComponents Core
	A.16 Apache Jena
	A.17 Apache Log4j
	A.18 Apache Lucene
	A.19 Apache Xerces2
	A.20 Apache xml-commons
	A.21 Cloudera CDH
	A.22 Fastutil
	A.23 GeoNames Data
	A.24 Geospatial Data Abstraction Library (GDAL)
	A.25 Google Guava
	A.26 Google Guice
	A.27 Google protobuf
	A.28 Jackson
	A.29 Jansi
	A.30 JCodec
	A.31 Jettison
	A.32 JLine
	A.33 Javassist
	A.34 Jung
	A.35 MessagePack
	A.36 Netty
	A.37 OpenCV
	A.38 Slf4j
	A.39 Tinkerpop Blueprints
	A.40 Tinkerpop Gremlin
	A.41 Tinkerpop Pipes

